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This is the first of a series of articles showing how 4 dimensionally covariant analyti-
cal procedures developed in the context of General Relativity can be usefully adapted

for application in a purely Newtonian framework where they provide physical insights
(e.g. concerning helicity currents) that are not so easy to obtain by the traditional
approach based on a 3 + 1 spacetime decomposition. After an introductory presenta-
tion of the relevant Milne spacetime structure and the associated Cartan connection,
the essential principles are illustrated by application to the variational formulation of
simple barotropic perfect fluid models. This variational treatment is then extended to
conservative multiconstituent self-gravitating fluid models of the more general kind that
is needed for treating the effects of superfluidity in neutron stars.

1. Introduction

As a generalization of previous work1 on the special case of Landau’s two-

constituent superfluid model, using a 4-dimensionally covariant treatment of the

kind pioneered by Peradzynski,2 this article presents a coherent fully covariant

approach to the construction and application of Newtonian fluid models of the

more general kind required in the context of neutron star phenomena in cases for

which it is necessary to allow for independent motion of neutronic and protonic

constituents.

Whereas a simple perfect fluid model is sufficient for deriving the most basic

features of neutron stars (such as the radius for a given mass and the oblateness

for a given angular momentum) models involving at least two independent con-

stituents (of which at least one is superfluid) are needed to account for the details

revealed by pulsar frequency observations. If quantitative accuracy is needed, the

high mean densities of neutron stars require the use of a general relativistic treat-

ment. In accordance with this requirement, in applications for which a simple perfect

fluid model is sufficient, use of fully relativistic models has been standard practice

since the outset of neutron star theory. However, when more elaborate models
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have been needed, most work has relied on less accurate Newtonian models, either

because the relevant relativistic models had not been developed or because, even if

available in principle, the relevant relativistic models were too difficult to apply in

practice.

When both non-relativistic and relativistic versions are available, as is the case1,3

for multiconstituent superfluid models, the question of which is most appropriate for

a given purpose depends not just on considerations of intrinsic accuracy or compu-

tational economy but also on questions of extrinsic compatibility with the relevant

background framework. Thus for treating perturbations of a zeroth order global

configuration described by a fully relativistic perfect fluid model, what will usually

be most convenient is the employment4,5 of a two constituent fluid model that is

also fully relativistic. However to deal with interactions with a solid crust described

by a Newtonian elasticity model (since although appropriate relativistic elasticity

models are available in principle,3 their technical complexity has so far prevented

them from being effectively applied in practice) it may be more practical6,7 to use

a two constituent fluid model that is also non-relativistic.

The purpose of this article is to show how to set up and apply a fully covariant

formulation of the kinds of non-relativistic multiconstituent fluid dynamical models

that are needed for such cases. Using a more traditional kind of formulation based

on a preferred space reference frame (which complicates the treatment of effects

such as helicity conservation, but facilitates the generalization to allow for electro-

magnetism) a complementary development of the same class of Newtonian models

has recently been provided by Prix.8

The previous analysis, on which the present work is based,1 was restricted to

the Landau model which involves just a single massive particle constituent together

with a second constituent, representing entropy, that is massless in the Newto-

nian limit. The more general analysis presented here covers cases (including the

historic prototype of the Andreev–Bashkin model9 for a superfluid helium mix-

ture) involving at least two independent constituents representing particles of which

both kinds are massive, as in the particularly relevant example of the application

to independently moving superfluid neutrons and protons. One of the side issues

that will be dealt with here is the relationship between the effect of entrainment

(whereby the relevant momenta deviate from the corresponding particle velocities)

and the “effective masses” that have been defined in different ways in the published

literature.

As has already been pointed out by Peradzynski,2 a noteworthy advantage (even

for non-relativistic description) of using a 4-dimensionally covariant treatment, like

that of the “canonical” approach developped here, is the possibility of exploiting

Cartan type methods of mathematical analysis, involving the use of antisymmetric

differential forms for the construction, not just of vorticities, but also (as in the

relativistic case)10 of a more elaborate category of helicity currents. The technical

intricacy of the construction procedure for these helicity currents is such that they

would be very awkward to deal with (and are therefore usually ignored) in the
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conventional kind of approach based on a non-covariant frame based formulation

of Newtonian theory.

When setting up a covariant description of Newtonian theory it is worthwhile

to recall how, having already jettisoned the distinction between time and space in

his special relativity theory, Einstein went on to jettison the distinction between

spacetime and gravitation in his general relativity theory: in the latter theory the

specification of the spacetime metric gµν automatically includes the specification

of gravity via the corresponding Riemannian covariant differentiation operator ∇µ

which is determined by a connection with components Γ ν
µ ρ that are given by the

well known Christoffel formula

Γ ν
µ ρ = gνσ

(

gσ(µ,ρ) −
1

2
gµρ,σ

)

,

using a comma for partial differentiation with respect to the (arbitrarily chosen)

spacetime coordinates xµ, and round brackets for index symmetrisation. However

a distinction between spacetime and gravity can be made in the Newtonian ana-

logue of Einstein’s Riemannian structure, namely something that is known11,12

as a Newton–Cartan structure — whose not so widely familiar principles will be

recapitulated below — involving a non-Riemannian covariant differentiation oper-

ator Dµ that is determined by a Cartan connection with components ω ν
µ ρ that are

not obtainable from a Christoffel formula because the Newtonian structure does not

specify the non-degenerate spacetime metric that would be needed. In contrast with

the inextricable case of general relativity, it is possible in the Newtonian case to

extricate the specification of the gravitational field, as given by the (non-tensorial)

Cartan connection components ω ν
µ ρ, from that of the underlying spacetime mani-

fold. Prior to any knowledge of the gravitational field (i.e. the Cartan connection)

the only endowment of the underlying Newtonian spacetime manifold consists just

of what is describable as a Milne structure, a concept that will be briefly recapitu-

lated in the immediately following section.

Like the Minkowski structure of special relativity theory, the Milne struc-

ture of Newtonian spacetime does not involve any free parameters or fields,

i.e. it is intrinsically unique (modulo diffeomorphisms). Nevertheless, despite its

intrinsic simplicity the nature of this Newtonian spacetime structure is just suffi-

ciently subtle to have prevented it from being properly understood until Milne’s

introduction of Newtonian cosmology theory a couple of decades after Einstein’s

introduction of general relativity — though not so long after Friedmann’s foun-

dation of the corresponding general relativistic cosmology theory — at about the

same time as Cartan’s epoch making work on the development of the appropriate

mathematical machinery. Milne’s breakthrough was based on the extrapolation

to a global level of Einstein’s earlier observation — originally in a Newtonian

context, as a guiding principle for the construction of the corresponding rela-

tivistic theory — of the equivalence at a local level between gravitation and

acceleration.
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2. Covariant Description of Newtonian Spacetime

Whereas a fully covariant treatment is generally recognised to be indispensable

for formulating general relativistic models, on the other hand, for their Newtonian

analogues, the usual practice is to rely entirely on an “Aristotelian” decomposi-

tion whereby spacetime is considered as a direct product of a flat Euclidean 3-

space with a one-dimensional Euclidean time line. Any such Aristotelian structure

will be characterized by a corresponding class of Aristotelian coordinate systems,

which consist of a set of ordinary Cartesian (orthonormal) space coordinates X i

(i = 1, 2, 3) together with a Newtonian time coordinate t which is physically well

defined modulo a choice of time origin. These coordinate systems are mapped onto

each other by the transformations of a 7 parameter Aristotelian symmetry group,

consisting of the product of the 6 parameter group of Euclidean translations and

rotations with the 1 parameter group of time translations.

Whereas the time coordinate t of such a system is physically well defined

(modulo an arbitrary adjustment of the origin) it has been generally recognised

since the foundation of Newtonian theory that in a generic application there will be

no uniquely preferred Aristotelian structure, but that the theory will be invariant

with respect to a group of gauge transformations relating different Aristotelian

product structures that all share the same constant time sections but that do not

have the same sections of constant space position (as measured by fixed values

of the Aristotelian space coordinates X i). Any such gauge transformation will be

specifiable by a mapping of one of the (7 parameter family of) sets of Aristotelian

coordinates of a particular Aristotelian structure to a set belonging to another such

structure. Since the flat constant time sections are preserved, any such transforma-

tion must be expressible just as a mapping X i 7→ X̆ i, t 7→ t̆, for which the time

transformation is trivial, t̆ = t, and for which the new space coordinates X̆ i are

given by a time dependent Euclidean transformation. However not all kinds of time

dependent Euclidean transformation are admissible. In particular time dependent

rotations (belonging to what is known as the Coriolis group) are excluded from the

status of gauge transformations because they change the physical comportment of

the system (giving rise to what is known as the Coriolis effect).

It turns out that the only admissible gauge transformations between different

Aristotelian structures are time dependent space translations as given by a trans-

formation of the form X i 7→ X̆ i with

X̆ i = X i − ci , (1)

for quantities ci that are constants in the sense that they have to be independent of

the space coordinates X i, but that are arbitrarily variable as functions of time. For

a long time it was generally believed that not all such time dependent translations

were admissible, but only the three parameter set of Galilean transformations,

meaning those which are linear so that the quantities ci can be taken to be given by

expressions of the form ci = bit in which the quantities bi are constants in the strong

sense of being independent not just of the X i but also of t. A set of Aristotelian
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structures related by such linear transformations constitutes what may be described

as a Galilei structure.

The important point that escaped everybody’s notice until, after having been

implicitly recognised in Einstein’s “equivalence principle,” it was finally exploited

for the foundation of Newtonian cosmology by Milne14 is that Newtonian mechanics

contains nothing to distinguish any particular preferred Galilei structure. The set

of gauge transformations that are admissible in the sense that (unlike generic

Coriolis transformations) they preserve the form of the physical laws of motion

is not restricted to linear Galilean transformations, but includes generic transfor-

mations of the form (1) in which, while independent of the X i, the quantities ci

are allowed to have an arbitrarily non-linear dependence on the time t. The com-

plete set of all the Aristotelian product decompositions that can be obtained by

such Milne gauge transformations constitutes what may be described as the Milne

structure of spacetime. Thus the (physically unique) Milne structure consists of a

family of (physically equivalent) Galilean structures that are related to each other

by accelerated space translation transformations of the form (1), while each member

of the (infinite parameter set) of Galilei structures consists of a (3 parameter) set

of Aristotelian structures that are related to each other by linear transformations

of the form (1).

Although the traditional employment of a particular choice of Aristotelian struc-

ture, and in particular of some corresponding set of Aristotelian coordinates {t, X i}

is useful for many purposes, such as the exploitation of the flatness and distant

parallelism of the preferred (constant time) 3-space sections, the advantages of this

are not cost free. The price to be paid includes not just the well known obligation to

verify Galilean (and Milne) invariance with respect to changes of the Aristotelian

frame. Another, less well known, cost is the loss of access to the elegant and powerful

mathematical methods based on tensors, and particularly on Cartan type differen-

tial forms, that become available when a fully covariant four-dimensional framework

is used.

A convenient feature of the three-dimensional constant time sections in an

Aristotelian decomposition is the existence of a physically well defined — and flat —

metric having components γij that are given simply by the unit matrix with respect

to orthonormal Aristotelian space coordinates X i (i, j = 1, 2, 3). This metric can

be used together with its contravariant inverse γij for raising and lowering of space

indices, including those of the associated antisymmetric volume measure tensor εijk

(whose non-vanishing components are given by ±
√

det{γ} with the sign depending

on whether the {i, j, k} is an even or odd permutation of {1, 2, 3}) whose contra-

variant version will be characterized by the normalization condition εijkεijk = 3!.

A similarly convenient feature of a general relativistic formulation, is the existence

of a physically well defined — but not in general flat — spacetime metric giving

components gµν say with respect to coordinates xµ (µ, ν = 0, 1, 2, 3), which deter-

mines a corresponding antisymmetric spacetime volume measure tensor with non-

vanishing components equal to ±
√

−det{g}, and that can be used together with
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its contravariant inverse gµν for raising and lowering of spacetime indices. Quite

apart from the seductive flatness and parallelism properties of the preferred space

sections in an Aristotelian decomposition, one of the reasons why fully covariant

formulations of Newtonian dynamics are not as widely used as they deserve to be

is their lack of an analogous means of raising and lowering of spacetime indices.

One of the purposes of this work is to show that, despite this handicap, Newtonian

mechanics can nevertheless be set up without too much difficulty in a fully covariant

formulation that makes it easy to exploit the technical advantages of freedom to

use arbitrarily curved spacetime coordinates xµ.

The first step is to obtain the fundamental spacetime tensor fields that are avail-

able, in lieu of the relativistic metric tensor, for the characterization of Newtonian

spacetime. To start with, for any fixed value of the preferred Newtonian time coor-

dinate, t, the embedding mapping X i 7→ xµ of the corresponding Aristotelian space

section will determine physically well defined contravariant spacetime tensor fields

with components given by

γµν = γijx
µ
,ix

ν
,j , εµνρ = εijkx

µ
,ix

ν
,jx

ρ
,k , (2)

using a comma to indicate partial differentiation (in this case with respect to

the space coordinates X i). However there is no unambiguously preferred (Galilei

invariant) prescription for lowering the indices to obtain corresponding contra-

variant versions γµν and εµνρ because the former is degenerate (γµν has matrix

rank 3 not 4) so it does not have a well defined inverse.

The foregoing consideration means that in Newtonian theory four-dimensional

tensor indices will in general have an irrevocably covariant or contravariant nature.

The most basic example is that of the preferred covariant unit vector tµ that is

obtained simply as the gradient of the preferred Newtonian time coordinate, i.e.

tµ = t,µ, and that is a null eigencovector of the degenerate preferred contravariant

space metric, and also orthogonal to εµνρ, i.e.

γµν tν = 0 , εµνρtρ = 0 . (3)

An exception, having both a covariant and a contravariant version, is that of the

antisymmetric spacetime volume measure tensor εµνρσ , which has a physically well

defined normalization — despite the lack of a non-degenerate spacetime metric in

the Newtonian framework — that is specified by the relation

tµ =
1

3!
εµνρσενρσ , (4)

and for which a corresponding contravariant version is unambiguously definable by

a normalization condition of the same form,

εµνρσεµνρσ = −4! , (5)

as holds in general relativity, which means that it will satisfy

εµνρσtσ = εµνρ . (6)
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The fields γµν and tµ (the degenerate residue representing all of the algebraic

structure that remains from the relativistic spacetime metric in the Newtonian

limit) constitute what may be termed a Coriolis structure, since it contains nothing

that distinguishes rotating from non-rotating frames. To incorporate this distinc-

tion, and thereby complete the covariant specification of Newtonian spacetime, we

must consider what to use in place of the Riemannian connection and the associated

covariant differentiation operator that in general relativity is uniquely specified by

the spacetime metric gµν . In the Newtonian case, a corresponding physically well

defined but non-Riemannian connection ω ν
µ ρ and associated covariant differentia-

tion operator Dµ will be provided by the Newton–Cartan structure that is deter-

mined by the gravitational field in the manner to be described at the end of the

next section. However the only features of the Newtonian spacetime background

that are well defined a priori (in the absence of information about the gravita-

tional field that specifies the Newton–Cartan structure) are those provided by the

Milne structure that was described at the beginning of this section.

The Milne structure by itself (without reference to the gravitational field) does

not provide enough information for the unambiguous specification of a connection.

What it is capable of providing is a connection that is gauge dependent. Specifically

for each choice of gauge, i.e. for each choice of a particular Aristotelian product

structure, there will be a corresponding natural connection with components Γ ν
µ ρ

defined by the condition that they simply vanish when evaluated with respect to

a corresponding system of Aristotelian coordinates {t, X i} (though not of course if

the orthonormal space coordinates X i were replaced by coordinates of some other,

e.g. spherical, kind). This means that with respect to coordinates of this particular

type (but not for a system of some other, e.g. spherical, kind) the corresponding

covariant differentiation operator ∇µ will be identifiable with the simple partial

differentiation operator ∂µ.

The gauge dependent connection Γ ν
µ ρ that is defined in this way has two con-

venient properties. Firstly, since it is identifiable with partial differentiation in the

relevant Aristotelian coordinate system, it is clear that since ∂µ∂ν = ∂ν∂µ the co-

variant derivative will automatically inherit the analogous commutation property

∇µ∇ν = ∇ν∇µ , (7)

i.e. the connection Γ ν
µ ρ has the property that (unlike the curved Newton–Cartan

connection described below) it is flat. The other convenient property is that

although (again unlike the gravitational field dependent Newton–Cartan connection

ω ν
µ ρ) it is gauge dependent, its gauge dependence is of a rather weak kind. Since

connection components are unaffected by linear transformations, it follows that Γ ν
µ ρ

will not be affected by gauge transformations of the restricted Galilean type. Choos-

ing a particular Galilean structure (i.e. a linearly related subclass of Aristotelian

structures) is equivalent to choosing a particular connection of this flat type. It will

be shown below how such a connection is affected by Milne gauge transformations

of the more general accelerated type that relate distinct Galilean structures.
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According to the preceeding definition, the Milne structure is an equivalence

class of Aristotelian (direct product of time and flat space) structures that are

related to each other by a gauge group consisting of time dependent space transla-

tions. In the modern (post Cartan) technical language of fibre bundle theory this

definition can be succinctly reformulated as follows.

In formal mathematical terms, the Milne structure of Newtonian spacetime is

formally describable as bundle of three-dimensional Euclidean space fibres (each

characterized by its own flat metric γij) over a base consisting of a line endowed

with a physically preferred time measure (specified by the coordinate t) for which

the relevant (Abelian) bundle group consists just of the 3-parameter set of Euclidean

space translations (but not rotations), which are expressible in terms of Cartesian

coordinate X i on the fibre simply by transformations of the form (1). (The exclu-

sion of Euclidean rotations from the bundle group is what distinguishes the Milne

structure from the more primitive Coriolis structure given just by the specification

of the fields tµ and γµν .)

Any particular section of this Milne bundle, i.e. a representation as a direct

product of the base times the fibre, will be interpretable as a particular choice of

an Aristotelian structure. In such a direct product structure, the preferred time

coordinate t on the base and a choice of Cartesian coordinates X i on a space

section (i.e. coordinates such that metric components γij form a unit matrix) will

determine a corresponding set of Aristotelian spacetime coordinates xµ according

to the obvious specification x0 = t, xi = X i. A corresponding connection is thereby

definable as the one with respect to which covariant differentiation reduces to partial

differentiation, i.e. the one for which ∇µ = ∂µ and Γ ρ
µ ν = 0, in these particular

coordinates. (This connection could be interpreted as the Riemannian connection

provided by a flat Unruh type spacetime metric of the form

ds2 = γij dX i dXj − C2dt2

in which C could be any arbitrarily chosen constant speed, which might be that of

light, but which in applications to perturbations in an asymptotically uniform fluid

background could more usefully13 be taken to be the relevant sound speed.)

3. Galilean and Milne Type Gauge Transformations

Although the dynamical equations of ordinary Maxwellian electromagnetic theory

are expressible in terms just of gauge independent quantities such as the electric and

magnetic fields, it is useful for many purposes, and indispensible for a variational

formulation, to employ various gauge dependent entities (starting with the vector

potential Aµ). In the present context (of ordinary Newtonian dynamical theory)

it is analogously useful for many purposes, and indispensible for a variational for-

mulation, to employ entities whose specification depends on a particular choice of

gauge, where in this context a “choice of gauge” is to be interpreted as meaning

a particular choice of Aristotelian structure within the large equivalence class of
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Aristotelian structures that collectively constitute the Milne structure described

above.

In terms of the Aristotelian coordinates {t, X i}, the transformation to the analo-

gous coordinates for any alternative bundle section, i.e. any alternative Aristotelian

structure, will be expressible by a transformation in which the base coordinate is

held fixed, i.e. t 7→ t while the Cartesian fibre coordinates X i are transformed

according to a relation of the form (1) in which the translation vector ci is given

as an arbitrarily variable function of the base coordinate t. It is evident that the

connection specified by the new gauge will be identical with the one specified by

the old section, i.e. we shall have Γ̆ ν
µ ρ = Γ ν

µ ρ and hence ∇̆µ = ∇µ, so long as the

transformation (1) is linear, i.e. so long as the translation is of the Galilean form

characterized by the condition that the components

bi =
dci

dt
, b0 = 0 , (8)

of the boost velocity vector of the transformation should be fixed, independently

of t. However the connection will not be preserved if there is a non-vanishing value

for the corresponding relative acceleration vector aµ as given by

ai =
dbi

dt
, a0 = 0 . (9)

It can be verified that for the new section obtained by a generic (i.e. accelerated)

Milne gauge transformation the corresponding new connection will be related to the

original one by a relation of the simple but non-trivial form Γ ν
µ ρ 7→ Γ̆ ν

µ ρ with

Γ̆ ν
µ ρ = Γ ν

µ ρ − tµaνtρ , (10)

where aν is the relevant transformation generator, which can be any vector that is

spacelike and spacially uniform (i.e. purely time dependent) in the sense that

tµaµ = 0 , γµν∇νaρ = 0 . (11)

This transformation law has the noteworthy feature of preserving the trace of the

connection, i.e. it gives

Γ̆ ν
µ ν = Γ ν

µ ν . (12)

It follows that if nµ is a physically well defined current 4-vector of the kind to be

discussed in the next section then the divergence given by the expression ∇νnν will

also be physically well defined as a gauge independent scalar field (which will vanish

in the particular case of a current that is conserved).

It will be convenient for future reference to introduce a scalar boost potential

function β that is defined, modulo an arbitrary time dependent constant of inte-

gration β{0} by,

bµ = γµν∇νβ , γµν∇νbρ = 0 , (13)
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so that in the original Aristotelian coordinate system it will be given explicitly by

an expression of the form

β = β{0} + γijb
iXj , γµν∇νβ{0} = 0 . (14)

It then follows that the relative acceleration vector will be given by

aµ = eν∇νbµ = γµν∇ν α , α = eν∇νβ , (15)

where eµ is the relevant “ether” 4-velocity vector, i.e. the unit time lapse vector of

the Aristotelian rest frame, whose components with respect to the corresponding

coordinates {t, X i} will be given by e0 = 1, ei = 0, so that it will satisfy the

conditions

eµtµ = 1 , ∇µeν = 0 . (16)

Whichever bundle section may have been used to specify it in the first place,

the connection will automatically be such as to preserve the fundamental tensors

γµν and tµ of the (Coriolis) spacetime structure, i.e. it will satisfy

∇µγνρ = 0 , ∇µtν = 0 , (17)

and hence also

∇µενρστ = 0 . (18)

Conversely the specification of any particular connection that satisfies these preser-

vation conditions will characterize what may be described as the corresponding

Galilei structure, which can be conceived as an equivalence class of Aristotelian

(i.e. direct product) structures related by linear gauge transformations of the form

(1) with vanishing value of the relative acceleration vector defined by (9).

For centuries after Newton’s original development of his theory it was taken for

granted that the relevant equations of motion singled out a preferred Galilei struc-

ture with a corresponding Galilean transformation group with respect to which

their form remained covariant. What Milne realized14 was that except in the case

of a localized system in an asymptotically empty background (such as the solar

system example to which the early successes of Newton’s theory were restricted)

the equivalence principle prevents the prescription of any natural rule for preferring

some particular Galilean structure rather than another. Thus, as a consequence of

the applicability of the equivalence principle, it transpires that the relevant equa-

tions of motion are covariant not just with respect to the Galilei group but also

with respect to the larger Milne group, which relates distinct Galilei structures by

transformations characterized by non-vanishing values of the relative acceleration

vector aµ.
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4. Gravity, Particle Dynamics, and the Newton Cartan Connection

The way the foregoing considerations apply to the most basic of the Newtonian

equations of motion, namely the equation of motion for a free particle in some

given gravitational field, is as follows. Having specified the worldline of the particle

giving the relevant spacetime coordinates xµ as functions of the Newtonian time

t, one can go on to define the corresponding 4-velocity vector defined as the time

parametrized tangent vector given by

uµ =
dxµ

dt
, (19)

of which only three components are actually independent since the definition auto-

matically ensures that it satisfies the unit normalization condition

uµtµ = 1 . (20)

The equation of motion will then be expressible covariantly as

uν∇νuµ = gµ , (21)

where gµ is the relevant gravitational field vector, which must be strictly spacelike

to avoid inconsistency with (20), and which, more specifically, is required to be

derivable as the space gradient of a Newtonian potential φ, i.e.

tµgµ = 0 , gµ = −γµν∇νφ . (22)

Although it was traditionally expressed in a non-covariant mathematical form,

the relation (21) was recognised from the outset to be physically invariant with

respect to Galilean transformations, i.e. the linear transformations that preserve the

connection involved in the covariant differentiation operator ∇ν . The crucial point

that eluded Newton and everyone else before the time of Einstein, Friedmann, and

Milne is that gµ is akin to the scalar potential φ (and to Maxwell’s covector potential

Aµ as contrasted with the tensorially well defined electromagnetic field Fµν) in

that it cannot be considered to be an absolutely well defined locally measurable

vector field but should be recognised to be gauge dependent. It can be seen from

Eq. (10) that the relation (21) is in fact invariant not just with respect to Galilean

transformations but to generic Milne transformations as characterized by a non-

vanishing acceleration vector aµ in (9), provided it is understood that gµ undergoes

a corresponding Milne gauge transformation of the simple form gµ 7→ ğµ with

ğµ = gµ − aµ . (23)

This evidently entails the requirement that the Newtonian potential should trans-

form according to a law of the form φ 7→ φ̆ with

φ̆ = φ + α , (24)

in which scalar field α will be given by (15) as the ether (i.e. Aristotelian) frame

time derivative of the boost potential β. The freedom to adjust the specification

(14) of the latter by freely choosing the time dependence of the value β{0} of the
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boost potential at the Aristotelian coordinate origin corresponds to the calibration

freedom in the specification of φ by (22). Thus, even in a fixed Aristotelian frame,

the potential φ will be subject to trivial gauge transformations consisting of the

addition of a purely time dependent quantity that is identifiable simply as the time

derivative of β{0}.

The idea of the Newton–Cartan formulation11,12 is to replace the gauge depen-

dent differential operator ∇µ by a corresponding gauge covariant differential oper-

ator Dµ that is specified by replacing the flat connection Γ ν
µ ρ by a gravitationally

modified connection ω ν
µ ρ say that is given by

ω ν
µ ρ = Γ ν

µ ρ − tµgνtρ . (25)

Using (23) in conjunction with (10), it can be verified that this modified connection

has the desired gauge invariance property ω ν
µ ρ 7→ ω̆ ν

µ ρ with

ω̆ ν
µ ρ = ω ν

µ ρ . (26)

This makes it possible to rewrite the dynamical equation (21) in the manifestly

gauge invariant (as well as coordinate covariant) form

uνDνuµ = 0 . (27)

While facilitating the comparison with general relativity, this gauge covariant

differention operator Dµ has the disadvantage of lacking the convenient flatness

property (7) of the gauge dependent alternative ∇µ. For example if we consider not

just a single particle trajectory but a fluid flow characterized by a velocity 4-vector

uµ that is defined as a field over spacetime then we shall have

D[µDν]u
ρ =

1

2
R ρ

µν σuσ , (28)

using square brackets to indicate index antisymmetrization, where R ρ
µν σ is the

Newton–Cartan curvature tensor which can easily be seen to be given by the

expression

R ρ
µν σ = 2tσt[µ∇ν]g

ρ . (29)

Although it is not immediately manifest from this formula, it can be easily verified

using Eqs. (11) and (23) that this curvature tensor is indeed invariant under the

gauge transformation (10), i.e. it satisfies R ρ
µν σ 7→ R̆ ρ

µν σ with

R̆ ρ
µν σ = R ρ

µν σ . (30)

It can be seen that the corresponding (again Milne gauge independent) Ricci type

curvature trace tensor is proportional to the Laplacian of the gravitational potential,

having only a single independent component that is specified by the formula

Rµν = R ρ
ρµ ν = tµtνγρσ∇ρ∇σφ . (31)
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5. Action and the 4-Momentum Covector

Although, as has just been shown, the dynamical equation (27) is gauge indepen-

dent, its derivation from an action principle requires the use of a gauge dependent

momentum covector πµ that is in many ways analogous to the electromagnetic

gauge potential Aµ that is needed for the variational formulation of Maxwell’s equa-

tion. The original variational formulation of the Newtonian dynamical equation by

Laplace was given by an action integral

I =

∫

L dt , (32)

in which the Lagrangian scalar is taken to be the difference between the kinetic and

potential energies in the well-known form

L =
1

2
mv2 − mφ , (33)

where m is a constant mass parameter, and v is the magnitude of the 3 velocity

vector vµ as specified with respect to some chosen Aristotelian reference system, in

terms of the corresponding ether vector eµ, by

vµ = uµ − eµ , vµtµ = 0 , (34)

so that its Aristotelian components will be given by

v0 = 0 , vi =
dX i

dt
. (35)

and its magnitude by

v2 = γijv
ivj . (36)

This action can be rewritten in the more elegantly covariant form

I =

∫

πµ dxµ , (37)

which is evidently equivalent to taking

L = πµuµ , (38)

by defining the appropriate gauge dependent 4-momentum covector as follows. In

terms of the Aristotelian coordinate system x0 = t, xi = X i characterizing the

chosen gauge, in which we shall evidently have

u0 = 1 , ui = vi , (39)

the appropriate 4-momentum covector will be given by the prescription

π0 = −E , πi = mγijv
j , (40)

in which the total particle energy is given by the usual formula

E =
1

2
mv2 + mφ . (41)
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Instead of explicit reliance on the Aristotelian coordinate system, we can use the

corresponding ether vector eµ as introduced in Eq. (16), i.e. the unit 4-velocity

vector of the Aristotelian rest frame, with respect to which its components will be

given simply by

e0 = 1 , ei = 0 , (42)

for the purpose of obtaining a covariant expression for πµ as follows. To start with,

we use the Kronecker unit tensor δµ
ν to construct the corresponding Aristotelian

space projection tensor according to the specification

γ µ
ν = δµ

ν − e µtν . (43)

We then use the defining relations

γµνeν = 0 , γµνγνρ = γρ
µ , (44)

to characterize the covariant tensor γµν obtained via the Aristotelian coordinate

mapping from the space metric γij in the constant time 3-sections. We can then

define the kinetic 4-momentum vector by

pµ = mvµ −
1

2
mv2tµ , (45)

where

vµ = γµνuν , v2 = vµvµ = γµνuµuν (46)

so that we have

1

2
mv2 = pνuν = −pνeν . (47)

Like the uµ the kinetic momentum has only three independent components, being

subject to a constraint that in this case (unlike that of uµ) is ether frame dependent,

having the form

γµνpµpν = −2meµpµ . (48)

In terms of this kinetic contribution we finally obtain the expression

πµ = pµ − mφ tµ , (49)

for the complete momentum covector.

6. Finite and Infinitesimal Gauge Transformation Rules

Since the boost transformation law for the Aristotelian ether vector evidently takes

the form eµ 7→ ĕµ with

ĕµ = eµ + bµ , (50)

it can be seen that while, the degenerate contravariant metric tensor is gauge

invariant,

γ̆µν = γµν , (51)
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the corresponding mixed projection tensor (43) will undergo a transformation

given by

γ̆µ
ν = γµ

ν − tνbµ , (52)

and the corresponding degenerate covariant metric tensor will be governed by the

less trivial transformation rule

γ̆µν = γµν − 2t(µγν)ρb
ρ + b2tµtν , (53)

in which the boost magnitude b is naturally defined by

b2 = γµνbµbν . (54)

Thus while the contravariant form of the relative velocity (34) obeys the simple

Galilean transformation rule

v̆µ = vµ − bµ , (55)

the corresponding covariant vector

vµ = γµνvν (56)

transforms according to the less simple rule

v̆µ = vµ − γµνbν + tµ(b2 − bνvν) , (57)

while for the squared velocity

v2 = vµvµ = γµνuµuν , (58)

one obtains

v̆2 = v2 − 2bµvµ + b2 . (59)

When applied to the kinetic momentum covector (45) the foregoing formulae

provide the gauge transformation rule pµ 7→ p̆µ with

p̆µ = pµ − mγµνbν +
1

2
mb2tµ , (60)

and thus the transformation rule for the complete momentum covector (49) can be

seen to be expressible in terms of the boost potential β by

π̆µ = πµ − m∇µβ +
1

2
mb2tµ , (61)

so that, in particular, the corresponding transformation law for its energy compo-

nent (41) will be expressible as

Ĕ = E − pνbν + m

(

1

2
b2 + α

)

, (62)

while finally for the Lagrangian scalar (38) we obtain L 7→ L̆ with

L̆ = L − muµ∇µβ +
1

2
mb2 . (63)
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It is apparent from the form of these transformation rules that it will be con-

venient to work with a recalibrated boost potential, β̂ = β − 1
2

∫

b2dt, that will be

characterized by

∇ν β̂ = ∇νβ −
1

2
b2tν . (64)

Since the difference between β and β̂ is a function only of the cosmological time,

we can just as well use the latter as the former in the characterization (13), which

can be rewritten as

bµ = γµν∇ν β̂ , γµν∇νbρ = 0 , (65)

but in terms of the recalibrated boost potential the expression (15) for the accelera-

tion will acquire the slightly modified form

aµ = γµν∇να , α = eµ∇µβ̂ +
1

2
b2 . (66)

The corresponding modification of the formula (62) for the transformation of the

energy will be given by

Ĕ = E − pνbν + m(eν + bν)∇ν β̂ . (67)

However it is for the 4-momentum covector and the Lagrangian that the advantage

of the modified boost potential becomes apparent, since it allows Eqs. (61) and (62)

to be rewritten more simply as

π̆µ = πµ − m∇µβ̂ , (68)

and

L̆ = L − muµ∇µβ̂ . (69)

The effect of the gauge transformation on the action integral (32) can thus be

seen to be given by I 7→ Ĭ with

Ĭ = I − m[β̂] , (70)

using large square brackets to denote the total change in the boost potential β

along the worldline segment under consideration. Since the gauge adjustment term

in Eq. (70) will not be affected by any purely local variation of the worldine (local

meaning that it is non-vanishing only on a confined subsegment lying entirely

inside the extended worldline segment under consideration) it is obvious that it

will have no effect as far as the application of the variational principle is con-

cerned. The observation that the gauge transformation changes the action only

by an amount that is constant in the sense of being independent of local world-

line variations evidently accounts for the invariance with respect to these (linear

Galilean or accelerated Milne) transformations of the ensuing system of dynamical

equations.

The preceeding example is one of many in which it is simpler not to work with

finite (Galilean or Milne) transformations as we have been doing so far, but with
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linearized infinitesimal transformations. For a given gauge transformation generated

by a given boost potential β, whereby a generic quantity, q say, is subject to a

mapping q 7→ q̆, the corresponding infinitesimal gauge transformation q 7→ d̆q is

defined by a routine two step procedure as follows. The first step is to construct

a homotopic interpolation by a one parameter family of gauge transformations

q 7→ q{ε} with q{0} = q and q{1} = q̆, for which q{ε} is given, for intermediate

values of the homotopy parameter ε, by an interpolating boost potential β{ε} = εβ.

The corresponding infinitesimal transformation is then obtained by taking the limit,

as ε → 0, of the derivative with respect to ε, so that we have

d̆q = lim
ε→0

d

dε
(q{ε}) . (71)

This differential operation will merely restore the value we started with (as

recovered by setting ε = 0) for quantities whose dependence on the transformation

amplitude is homogeneously linear as is the case for the diverse derivatives of the

boost function, which will be characterized by

d̆α = α , d̆bµ = bµ , d̆aµ = aµ , (72)

and also of course for the original boost function β itself, though not for the modified

boost function β̂ for which we obtain a convenient simplification,

d̆β̂ = d̆β = β , (73)

which means that at the differential level the modification β̂ is redundant. In a

similar manner, going to the differential level provides no great simplification for

quantities whose gauge transformation depends just linearly on the boost ampli-

tude, as is the case for ether vector eµ, and the 3-velocity vector vµ, for which we

obtain

d̆eµ = bµ , d̆vµ = −bµ , (74)

as well as for the less trivial cases of the mixed projection tensor γµ
ν , and the

connection Γ ν
µ ρ, for which, from (52) and (10), we obtain

d̆γµ
ν = −tνbµ , d̆Γ ν

µ ρ = −tµaνtρ , (75)

but for quantities with more complicated gauge dependence the differential level is

much more convenient. Noteworthy examples are the covariant space metric tensor

γµν and the kinetic momentum vector pµ for which the formulae (53) and (60)

reduce simply to

d̆γµν = −2t(µγν)ρb
ρ , d̆pµ = −mγµνbν , (76)

and particularly the Lagrangian L, and the complete momentum covector πµ, for

which we simply obtain

d̆L = −muν∇νβ , d̆πµ = −m∇µβ . (77)
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(The feature of transforming just by the addition of the gradient of a scalar is a

property that the 4-momentum covector πµ of Newtonian dynamics shares with the

covector potential Aµ of Maxwellian electromagnetism, a relationship that is essen-

tial for the amalgamation of gravity and electromagnetism in the corresponding

general relativistic theory.)3

The corresponding differential version of the formula (70) for the action integral

is given by the expression

d̆I = −m[β] , (78)

whose evident path independence makes it obvious that the ensuing dynamical

theory will have to be gauge invariant, as shown above by the existence of the

manifestly covariant formulation (27) of the equations of motion.

7. Covariant Fluid Current Variation Formulae

The simple Lagrangian worldline variation principle for a single particle that was

discussed in the preceeding sections can be generalized in an obviously natural way

to a flow line variation principle for a fluid system.

Before proceeding, it is to be recalled that in the absence of any prescribed

spacetime structure the usual description of currents in terms of vector fields will

not be available, but it will still be possible to use the more fundamental Cartan

type description whereby a current is represented as a 3-form, i.e. an antisymmetric

covariant tensor with four-dimensional components Nµνρ whose surface integral

N =
1

3!

∫

Nµνρ d3xµνρ (79)

determines the total number flux over a 3-surface with tangent element

d3xµνρ = 3!d(1)x
[µd(2)x

νd(3)x
ρ]

generated by infinitesimal displacements d(i)x
µ (i = 1, 2, 3). In such a description,

the condition for the conservation of the number flux is the vanishing of its exterior

derivative as defined by (∂ ∧ N)µνρσ = 4∂[µNνρσ]. A convenient feature of such

exterior differentiation is that it makes no difference if the partial differentiation

operator ∂µ is replaced by a tensorially covariant differentiation operator ∇µ (or

by Cartan’s gauge covariant differentiation operator Dµ) since due to the anti-

symmetrization all the (symmetric) connection components will cancel out.

The more fundamental three index description of the current will of course be

replacable by a more compact description involving a single contravariant index

whenever the spacetime background is endowed with a canonical antisymmetric

measure tensor εµνρσ and a corresponding contravariant alternating tensor εµνρσ ,

which, as seen above, will be the case both in relativistic and Newtonian spacetime.

The required current vector, with Aristotelian rest frame components

n0 = n , ni = nvi , (80)
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where n is the ordinary (scalar) particle number density, will then be given by the

duality relation

nµ =
1

3!
εµνρσNνρσ , (81)

which can be inverted to provide the expression

Nµνρ = εµνρσnσ . (82)

For any covariant symmetric connection compatible with the measure preservation

condition (18), the corresponding covariant differentiation operator will determine

a divergence that will just be the dual of the exterior derivative operator. Thus

independently of the choice of gauge one obtains the equivalent expressions

∇µnµ = Dµnµ =
1

4!
εµνρσ(∂ ∧ N)µνρσ =

1

3!
εµνρσNνρσ,µ , (83)

for the particle rate, which will vanish for a current that is conserved.

In order to apply the variational principle, we need to evaluate the variation of

the current that will result from transport by the action of an infinitesimal displace-

ment xµ 7→ xµ + ξµ. As a general principle3 the fixed point (Eulerian) variation of

any field will be given generally by its comoving (Lagrangian) variation minus the

relevant Lie derivative. Since the specification of the covariant representation of the

current does not depend on any background structure its comoving variation will

simply vanish, so its fixed point variation will just be given by the formula

δNµνρ = −ξ£Nµνρ , (84)

in which the Lie derivative is given by the standard formula

ξ£Nµνρ = ξσ∇σNµνρ + 3Nσ[µν∇ρ]ξ
σ . (85)

As for any Lie derivative formula (and as in exterior differentiation) it makes

no difference if the partial differentiation operator ∂µ is replaced by a tensorially

covariant differentiation operator ∇µ (or by Cartan’s gauge covariant differentiation

Dµ) since due to the antisymmetrization all the (symmetric) connection components

will cancel out. Thus by taking the dual of the formula (85) we obtain the useful

theorem that for any covariant symmetric connection compatible with the measure

preservation condition (18), the corresponding covariant differentiation operator ∇µ

can be used to express the fixed point (Eulerian) current variation produced by the

displacement vector field ξµ in the form

δnµ = nν∇νξµ − ξν∇νnµ − nµ∇νξν . (86)

This result establishes the validity in a Newtonian framework of a formula that has

long been in regular use in a relativistic context, where it was originally derived by a

rather different line of reasoning3 that depended on the Riemannian specification of

the covariant differentiation in terms of the non-degenerate spacetime metric that is

no longer available in the Newtonian case. It is clear from this present approach that
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the formula (86) will remain valid if Cartan’s gauge covariant derivative operator

Dµ is substituted in place of the flat but gauge dependent derivative operator ∇µ.

A useful corollary of Eq. (86) is the corresponding formula for the variation of

the current divergence, which takes the simple form

δ(∇νnν) = −∇µ(ξµ∇νnν) . (87)

It is immediately apparent from this that if the original current is conserved, i.e. if

∇νnν vanishes, then the displaced current will have the same conservation property.

The formal identity of the relativistic and Newtonian variation formulae will be

lost if we make a decomposition of the usual form

nµ = nuµ , n = nµtµ , (88)

in which n is the ordinary particle number density scalar and uµ is the 4-velocity of

the flow as characterized by the unit normalization condition (20). By contracting

(86) with tµ it can seen that the variation law for the particle number density will

be given by

δn = tµnν∇νξµ −∇ν(nξν) , (89)

which has a different form from its relativistic analogue3 due to its dependence on

the preferred time basis vector tµ (instead of the non-degenerate spacetime metric

gµν that plays the corresponding role in the relativistic version). The same remark

applies to the corresponding variation of the 4-velocity of the flow, which can be

seen from Eqs. (86) and (89) to be given by

δuµ = uν∇νξµ − ξν∇νuµ − uµuνtρ∇νξρ . (90)

8. Action Principle for Simple Perfect Fluid

The natural way to extend the single particle action principle discussed above to a

corresponding fluid action principle is to base the latter on the spacetime integral

of a Lagrangian density Λ that will be given by a decomposition of the form

Λ = Λpot + Λkin + Λint , (91)

in which the first two (gauge dependent) terms are given by the product of the rele-

vant particle number density n with the corresponding single particle contributions,

while the extra term Λint is given simply by

Λint = −Uint , (92)

where Uint is the internal compression energy, which will be a (naturally gauge

independent) function just of the particle number density n. Specifically, the exter-

nal potential energy contribution will be given by usual Newtonian formula

Λpot = −nmφ , (93)
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which may be rewritten in covariant form as

Λpot = −φ ρµtµ , (94)

where the mass density current is defined by

ρµ = ρuµ = mnµ , ρ = nm , (95)

while in accordance with (47) the kinetic contribution will be given by

Λkin = npµuµ = nµpµ , (96)

in terms of the (gauge dependent) kinetic 4-momentum covector defined by (45).

The extra (gauge independent) contribution (92) representing the negative of the

internal compression energy density will determine a corresponding (gauge inde-

pendent) chemical potential χ by a variation formula of the standard form

δUint = χδn . (97)

In terms of this chemical potential function, the relevant perfect fluid pressure

function P (which is also gauge independent) will be given by the well known

formula

P = nχ − Uint . (98)

Since, as a consequence of the restriction (48), the variation of the kinetic

momentum is automatically constrained to satisfy the identity

uµδpµ = 0 , (99)

it follows that the generic variation of the purely kinetic contribution to the Lagran-

gian will be given simply by

δΛkin = pµδnµ , (100)

The variation of the combination (91) will therefore be given by an expression of

the canonical form

δΛ = πµδnµ − ρδφ , (101)

in which the total 4-momentum is given by an expression of the form

πµ = µµ − mφ tµ , (102)

which differs from the corresponding free particle momentum formula (49) by the

replacement of the purely kinetic contribution pµ by a total material 4-momentum

covector µµ that is defined by

µµ = pµ − χtµ . (103)

This material momentum covector is alternatively definable by the variation formula

δΛmat = µµδnµ , (104)
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where the total material (non-gravitational) contribution to the Lagrangian density

is defined by

Λmat = Λkin + Λint . (105)

It can now be seen that the complete Lagrangian (91) will be elegantly expres-

sible in terms of the 4-momentum covector πµ and the pressure function P as

Λ = nµπµ + P . (106)

It is to be remarked that while the pressure term in (106) is gauge invariant, the first

term is not. However as the formula (102) for the fluid particle 4-momentum co-

vector πµ differs from its single particle analogue (49) only by the gauge independent

term proportional to χ in (103), it can be seen its variation d̆πµ under the action

of an infinitesimal gauge transformation will be given by the same simple formula

(77) as in the single particle case. It follows that the corresponding infinitesimal

gauge variation of the Lagrangian density (106) will be given simply by

d̆Λ = −ρν∇νβ . (107)

If it is taken for granted that the fluid obeys the ordinary Newtonian mass conser-

vation law

∇νρν = 0 , (108)

the infinitesimal gauge variation will be expressible as a pure divergence in the form

d̆Λ = −∇ν

(

βρν
)

. (109)

This means that the gauge change will have no effect on a localized variation of the

spacetime volume integral of the action density, so the dynamical equations given

by the action principle will automatically be gauge independent.

For the actual evaluation of the variation of the action, the work of the preceed-

ing section provides all the elements that are needed. It can be seen from Eqs. (101)

and (86) that when the fluid flow is subjected to the action of an infinitesimal dis-

placement vector field ξµ, the resulting variation of the Lagrangian density will be

given by the formula

δΛ = ∇µ

(

2πνn[µξν]
)

− fµξµ − ρδφ , (110)

in which the covector fµ is interpretable as the 4-force density acting on the fluid,

excluding the gravitational contribution which is already taken into account within

the formalism. This force density can be seen to be given by the prescription

fµ = 2nν∇[νπµ] + πµ∇νnν , (111)

i.e. it is constructed from the current vector and the corresponding momentum

covector by contraction with (exterior) derivative plus derivative of contraction.
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The postulate that the mass parameter m should be constant means that the

mass conservation law (108) will be equivalent to the particle conservation law

given, in accordance with Eq. (83) by

∇νnν = 0 , (112)

a result that is alternatively derivable, wherever the product nµπµ is non-zero, as

a consequence of the variational requirement that the force density (111) should

vanish. Subject to Eq. (112), the expression for the force density will evidently

reduce to the simple form

fµ = nν$νµ , (113)

in which the relevant generalized 4-vorticity 2-form is defined, as the exterior deriva-

tive of the 4-momentum covector, by

$µν = 2∇[µπν] . (114)

This vorticity 2-form $µν is generalized in the sense that it automatically includes

allowance for gravity, whose effect can be separated out in the decomposition

$µν = wµν + 2mt[µ∇ν]φ . (115)

in which wµν is the ordinary material vorticity tensor defined by

wµν = 2∇[µµν] . (116)

The adjustment allowing for gravitation affects only the time components, so both

the complete and the material vorticity give the same purely spacelike 3-velocity

vector, which is expressible independently of φ as

wµ =
1

2
εµνρwνρ =

1

2
εµνρ$νρ , (117)

and which is related to the purely kinematic local angular velocity vector ωµ by

the proportionality relation

wµ = 2mωµ , ωµ =
1

2
εµνρ∇νvρ . (118)

A related quantity that is easy to analyse in the covariant formalism we are

using here, but much more awkward to treat using the traditional 3 + 1 spacetime

decomposition — so much so that its role in Newtonian fluid dynamics, was not

recognised until the relatively recent work of Moreau15 and Moffat16 (a century

after the pionnering analysis of vorticity by workers of Kelvin’s generation) is that

of helicity. In that work (and in its more recent non-barotropic generalization)17 the

helicity was introduced as a scalar density that was constructed as the three dimen-

sion scalar product of the velocity vector vi and the vorticity vector wi. On the basis

of experience3 with the relativistic case, it is evident that in the 4-dimensionally co-

variant formalism we are using here, the helicity will most naturally be definable2,1

as a vectorial current ηµ that is proportional to the dual of the exterior product



March 4, 2004 10:41 WSPC/142-IJMPD 00454

314 B. Carter and N. Chamel

of the energy momentum covector πµ with the corresponding generalized vorticity

two form, $µν , namely

ηµ = εµνρσπν∇ρπσ =
1

2
εµνρσπν$ρσ . (119)

The time component of this quantity can be seen from Eq. (6) to be proportional to

the Moreau–Moffat helicity scalar, with a negative coefficient (in the sign convention

we are using, for which the sign of the measure component ε0123 is taken to be

positive, so that of ε0123 will be negative) that is given by −2m2, i.e.

ηµtµ = −wµπµ = −2m2ωivi . (120)

It immediately follows from the Eulerian dynamical equation, whose variational

derivation will be described below, that this helicity current ηµ will be conserved

in the simple sense that its 4-divergence,

∇µηµ =
1

4
εµνρσ$µν$ρσ , (121)

will turn out to vanish, a property that is both obvious and easy to express in the

four-dimensional approach used here, but not so trivial, either to derive or even to

present, within the (Latin as opposed to Greek index) framework of the traditional

3 + 1 formalism (see appendix).

The purport of the variational principle is that the spacetime volume integral of

δΛ should vanish for any displacement ξµ with bounded support (i.e. that vanishes

outside some bounded spacetime region). Since, by Green’s theorem, the divergence

contribution in (110) will make no contribution to the variational integral, the

principle reduces to the requirement that the 4-force density should vanish,

fµ = 0 . (122)

Subject to Eq. (112) this equation will reduce to the form

nν$νµ = 0 , (123)

in which the complete vorticity 2-form can be expressed as

$µν = 2∇[µpν] + 2t[µ∇ν](χ + mφ) . (124)

An immediate consequence of Eq. (123) is that (since its components form an

antisymmetric matrix with a zero eigenvalue eigenvector, namely nµ) the vorticity 2-

form $µν must be algebraicly degenerate, with vanishing determinant and therefore

matrix rank 2 (since an antisymmetric matrix cannot have even rank), a condition

that is expressible by the algebraic restriction

$µ[ν$ρσ] = 0 . (125)

This has the obvious corollary that the right hand side of Eq. (121) must vanish,

and hence that the helicity current ηµ will indeed be conserved, i.e. we shall have

∇µηµ = 0 . (126)
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Another, more widely known, consequence of the degeneracy property (125) is that

(exactly as in the relativistic case explained elsewhere)3 the vorticity 2-form will be

orthogonal to a two-dimensional tangent element, containing the flow vector nµ as

well as the vorticity 3-vector wµ defined by Eq. (117), and that (as in the analogous

case of magnetic 2-surfaces in a perfectly conducting plasma) these two-dimensional

tangent elements will be integrable in the sense of meshing together to form well

defined vorticity flux 2-surfaces.

The analogue for a 2-form $µν of the formula (85) for Lie derivation with respect

to a flow field nµ takes the form

n£$µν = 3nσ∇[σ$µν] − 2∇[µ($ν]σnσ) , (127)

in which the first term will drop out identically by the closure property, i.e. the

vanishing of the exterior derivative 3∇[σ$µν] of the vorticity as an automatic con-

sequence of its exactness property (114). When the field equation (123) is satisfied, it

can be seen that the second term in Eq. (127) will also drop out. We thus obtain the

covariant generalization of the well known Kelvin vorticity conservation theorem18

to the effect that the the vorticity 2 form will be conserved by Lie transport, with

respect to any arbitrarily rescaled multiple of the flow vector, i.e.

(ζn)£$µν = 0 , (128)

for an arbitrarily variable scalar field ζ.

It is to be noted that if, instead of restricting the variation δnν to be given by

the worldline displacement formula (86), one merely imposes current conservation

by adding a Lagrange multiplier term ϕ∇µnµ to the action density, then one will

get a more restricted dynamical equation to the effect that the momentum covector

should be the gradient of the Lagrange multiplier ϕ and thus that it should be

irrotational:

πµ = ∇µϕ ⇒ $µν = 0 . (129)

A solution of this irrotational type is the only kind that is allowed in the special

case of a simple superfluid (on a mesoscopic — i.e. intervortex — scale) for which

the scalar ϕ is interpretable as being proportional to the quantum phase angle of a

bosonic condensate.

In terms of the Newton–Cartan connection given by Eq. (25), the dynamical

equation (123) can be rewritten in the manifestly gauge invariant form

uνDνuµ = −
1

m
γµν∇νχ . (130)

This is just a covariant reformulation of the well-known Euler equation, which is

traditionally expressed in terms of the pressure function (98), whose variation can

be seen from (97) to be given in terms of that of the chemical potential χ by

δP = nδχ . (131)
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It is thereby possible to rewrite (130) as

uν∇νuµ = −γµν

(

∇νφ +
1

ρ
∇νP

)

, (132)

which can immediately be translated into Aristotelian coordinate notation to give

the original Eulerian version in the form18

∇
0
vi + vj∇jvi = −∇iφ −

1

ρ
∇iP . (133)

While this last version has the advantage of familiarity, and Eq. (130) has the

advantage of manifest gauge covariance (with respect to linear Galilean and non-

linear Milne transformations) it is the version (123) that is most convenient for

many mathematical purposes, since it involves only exterior differentiation, and

can therefore be evaluated in arbitrarily curved (e.g. comoving) coordinates using

only partial differentiation, without reference to any of the various relevant connec-

tions (the ω ν
µ ρ that is covariant but curved or the connection Γ ν

µ ρ that is flat but

gauge dependent). An example is the demonstration above of the way the use of

Eq. (123) greatly facilitates the treatment of helicity conservation, a concept that

is almost trivial (actually simpler than the concept of vorticity conservation) in

the covariant formalism developed here, but whose original derivation, in the frame

dependent notation of Eq. (133) was of a technical complexity such that it was

finally obtained (by Moreau and Moffat in the 1960’s)15,16 about a century later

than the development of the more elementary precursor concept of vorticity (by

nineteenth century pionneers such as Kelvin). The advantage of the fully covariant

approach will be even greater when we go on from simple to multiconstituent fluids.

9. Multiconstituent Fluid Models

We now extend the discussion to cases involving several independent — but not

always independently conserved — currents with current 4-vectors that we shall

denote by n ν
X where X is a “chemical” index with values ranging over the labels

of the various constituents involved. In particular the neutron star application for

which this work is particularly intended, will involve a neutron number density

current n ν
n and a proton number density current n ν

p so in this case the index X will

range over the pair of values X = n and X = p. Although the total baryon number

current nb = nn + np will be conserved, in applications dealing with long term

evolution the neutron and proton currents will not be separately conserved due to

the possibility of transfer of baryons from one to the other by weak interactions. To

deal with such cases it may be necessary to allow for the possibility that a particular

current n ν
X may be characterized by a non-vanishing value of the destruction rate

(per unit spacetime volume) that is defined (as the negative of the corresponding

creation rate) by

DX = −∇νn ν
X , (134)
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a formula in which, as explained above, it makes no difference what frame may

have been used to specify the connection involved in the covariant differentiation

operator ∇ν .

The obviously natural way to set up an appropriate Lagrangian for a multicon-

stituent fluid model is to take a combination of the same general form

Λ = Λmat + Λpot , (135)

as before, with the material contribution Λmat again given by a decomposition

of the form (105) as a sum of kinetic and internal contributions. As always, the

gravitational potential energy contribution will simply be given by

Λpot = −φ ρ , (136)

where ρ is the total mass density. However this will now be given as a sum over

constituents of the form

ρ =
∑

X

mXnX , (137)

in which mX is the Newtonian mass per particle associated with the current n ν
X .

The prescription (136) evidently has the same general form (94) as before when

written covariantly in terms of the corresponding total mass current vector

ρν =
∑

X

mXnν
X . (138)

One of the basic principles of Newtonian theory is that although the different con-

tributions need not be separately conserved (as matter can be transferred from one

to another by chemical or nuclear reactions) the total mass current (including all

relevant contributions) will still have to obey the conservation law (108).

In summation formulae such as Eqs. (137) and (138) (in which it would be legiti-

mate to use the standard shorthand summation convention whereby the explicit

use of the summation symbol Σ is omitted) it is to be noticed that the constituent

indices of the masses have been written “upstairs” to indicate their contravariant

character with respect to linear constituent recombinations, in contrast with the

currents, with indices “downstairs,” which undergo recombinations of the corre-

sponding covariant (inverse) form. The formulae (137) and (138) can be seen to

be covariant, while the resulting sums ρ and ρµ themselves are actually invariant,

when such linear transformations of chemical basis are carried out.

A simple illustration of a change of chemical basis is provided by typical astro-

physical applications for which it may be sufficient to treat the relevant matter (e.g.

in a stellar atmosphere) as a mixture of hydrogen (with atomic nucleus containing

just one proton) and helium (with atomic nucleus consisting of 2 protons and 2

neutrons), so that in terms of chemical index values X = H and X = He the total

mass density will be given by

ρ = mHnH + mHenHe .
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In an equivalent description based on the underlying proton and neutron number

densities, using index values X = p and X = n, the total mass density will be

given by an expression of the exactly analogous form ρ = mpnp + mnnn in which

the relevant densities are provided by a chemical basis transformation that is given

by the relations np = nH + 2nHe and nn = 2nHe. Having voluntarily chosen to

use downstairs chemical indices for the currents, we have no option but to use

upstairs indices for the masses because their corresponding transformation will be

of contravariant kind (i.e. given by the inverse of the covariant transformation

matrix) that in this particular illustration will be specified by the relations

mH = mp , mHe = 2mp + 2mn .

At the cost perhaps of obscuring other relevant information, such a change of chem-

ical basis (from the atomic reference system to the nuclear reference system) would

have the advantage of facilitating the exploitation of the empirical fact that for

many practical applications (particularly in contexts for which a Newtonian de-

scription is sufficiently accurate) it will be a good enough approximation to take

mn ∼ mp (a relation attributable to the corresponding, but still theoretically unex-

plained, approximate inequality between up and down — but not strange — quark

masses).

Having dealt with the gravitational potential contribution, we now turn to the

kinetic contribution in the decomposition (105) of Λkin, for which a multiconstituent

version can be obtained simply by adding up the contributions, as specified by (96),

of the separate constituents. We thus obtain a prescription of the form

Λkin =
∑

X

n ν
X pX

ν , (139)

in which, as in Eq. (138), the sum on the right is covariant with respect to spacetime

coordinate transformations. However despite its neat appearance (but due to the

non-linearity in the defining formula (45) for relevant kinetic momentum covectors

pX
ν) this contribution (139) is neither gauge invariant (with respect to non-linear

Milne or even linear Galilean transformations) nor invariant under changes of chem-

ical basis.

In the manner shown by (70) we can recover gauge invariance of the global

integrated action perturbation (though not of the local unperturbed action density)

by combining the kinetic contribution with the gravitational potential contribution.

This gauge invariance at the global perturbation level will evidently be preserved by

the addition of the extra locally Galilei (and hence a fortiori also Milne) invariant

term Λint that is needed to give a chemically invariant value for the total material

contribution Λmat, and hence also for the complete Lagrangian (135). The variation

δΛmat =
∑

X

µX
ν δn ν

X , (140)
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of the chemically invariant material Lagrangian will then define a chemically con-

travariant set of material momentum covectors µX
ν . These will be decomposible in

the form

µX
ν = pX

ν + χX
ν , (141)

where the internal momentum contributions are defined by the variation

δΛint =
∑

X

χX
ν δn ν

X , (142)

of the internal Lagrangian contribution, whose chemical basis dependence

endows the momentum contributions χX
ν with corresponding bad (meaning non-

contravariant) behavior under chemical basis transformations so as to cancel the

bad behavior of the kinetic momentum contributions pX
ν in such a way that the

total (141) is chemically well behaved. However, although their chemical transfor-

mation behaviour is complicated, the internal momentum contributions χX
ν have

the convenient redeeming feature that (unlike the chemically well behaved total

µX
ν) they are automatically invariant with respect to Milne (and therefore a for-

tiori Galilean) gauge transformations, as a consequence of the postulated gauge

invariance of the Lagrangian contribution Λint itself. In the manner to be derived

in Ref. 19, this gauge invariance entails corresponding Noether identities that are

expressible as
∑

X

tµn
µ

X χX
νγνσ = 0 . (143)

and
∑

X

n
[µ

X γσ]νχX
ν = 0 . (144)

The space projected parts of the internal momentum give rise to the effect (of a

kind that is familiar in the case of ordinary electron currents in a metallic conductor)

that is known as “entrainment” whereby the constituent momentum directions may

deviate from those of the corresponding velocities. However it follows from (143)

that the deviations will cancel out in the total, so that the (gauge dependent but

chemically invariant) 3-momentum density, i.e. the space projected part of the 4-

momentum density (138), as defined by

Πµ = γµ
νρν , (145)

will be expressible as a sum over separate material momentum contributions in the

form

Πµ =
∑

X

ΠXµ , (146)

in which the individual contributions are given by

ΠXµ = nXµX
νγνµ . (147)
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In a manner analogous to that by which the ordinary pressure function P was

introduced by Eq. (98) in the simple perfect fluid case, it is useful to define a corre-

sponding gauge invariant (and chemically invariant) generalized pressure function

Ψ for the multiconstituent case by the specification

Ψ = Λint −
∑

X

n ν
X χX

ν , (148)

It can be seen from (142) that the corresponding infinitesimal variation formula

will have the form

δΨ = −
∑

X

n ν
X δχX

ν . (149)

Putting the kinetic, internal, and external gravitational potential contributions

together, we now see that the variation of the complete Lagrangian (135) will have

the (chemically covariant) form

δΛ =
∑

X

πX
ν δn ν

X − ρ δφ , (150)

while the corresponding variation of the pressure function will be expressible in the

form

δΨ = −
∑

X

n ν
X δπX

ν − ρ δφ , (151)

in which the complete (chemically contravariant) particle momentum covectors of

the various constituent currents are given by expressions of the same form (102) as

in the single constituent case, namely

πX
µ = µX

µ − mXφtµ . (152)

It is to be observed that since the extra (gravitational) term here is purely temporal,

it makes no difference to the three momentum, so Eq. (147) can just as well be

written in the form

ΠXµ = nXπX
νγνµ . (153)

As in the case (106) of a simple perfect fluid, we can rewrite the complete

Lagrangian in terms of the momenta πX
ν and the generalized pressure function Ψ

in the form

Λ =
∑

X

n ν
X πX

ν + Ψ . (154)

Since, as in the single constituent case, the effect of an infinitesimal gauge trans-

formation on the momenta will be given in terms of the relevant boost potential β

by an expression of the simple form

d̆πX
µ = −mX∇µβ , (155)
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while the other quantities in (154) will remain invariant, it is evident that the

resulting infinitesimal gauge variation of the Lagrangian will be given by the formula

d̆Λ = −
∑

X

mXn ν
X ∇νβ . (156)

Subject to the (chemically invariant) restriction that each of the currents should

be separately conserved,

∇νn ν
X = 0 , (157)

it can be seen to follow that d̆Λ will be expressible as a pure divergence of exactly

the same simple form (109) as in the single constituent case. Since it can be seen

from Eq. (87) that the restriction (157) is preserved by the generic flow displacement

(84) it follows that the corresponding variational equations of motion that we shall

derive below will be gauge independent.

It is to be observed that the condition (109) for the gauge invariance of the

integrated action will still be satisfied even if the currents do not satisfy the sepa-

rate conservation conditions (157) but are restricted only by the single conservation

condition (108), that must always be satisfied by the total Newtonian mass current

(138). However, if the currents are not separately conserved, the total mass con-

servation condition (108) will not automatically be preserved by a generic set of

independent flow displacements of the form (84), so the variational principle will

no longer provide an automatically gauge invariant set of field equations.

When each current n ν
X is subject to its own independent displacement ξ ν

X ,

the generalization of Eq. (110) that we finally obtain by substituting Eq. (86) in

Eq. (150) will take the form

δΛ = ∇µ

(

2
∑

X

πX
νn

[µ
X ξ

ν]
X

)

−
∑

X

fX
µξ

µ
X − ρ δφ , (158)

in which, for each constituent, the covector fX
µ is interpretable as the 4-force density

acting on the corresponding current n
µ

X , and in which the value of this force density

can be read out as

fX
µ = 2n ν

X ∇[νπX
µ] + πX

µ∇νn ν
X . (159)

It is this that must vanish in the strictly conservative case for which the variational

field equations are satisfied.

Whenever the separate conservation conditions (157) actually are satisfied, the

force density will reduce to the simple form

fX
µ = n ν

X $X
νµ , (160)

using the notation

$X
µν = 2∇[µπX

ν] , (161)
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for the generalized vorticity tensors, which unlike the momenta from which they

are derived, can be seen from the form of (155) to be gauge invariant,

d̆$X
µν = 0 . (162)

Although the decay rates (134) are also gauge invariant,

d̆DX = 0 , (163)

whenever they are non-zero, i.e. when the separate conservation conditions (157)

are not satisfied, the resulting force density contributions

fX
µ = n ν

X $X
νµ − πX

µDX , (164)

will no longer be gauge invariant, but will transform according to the rule

d̆fX
µ = mXDX∇µβ . (165)

It can be seen from the general formula (127) that when the separate current

conservation conditions (157) are satisfied, the Lie derivatives of the vorticities with

respect to the corresponding flow fields will be given in terms of the corresponding

force densities by

nX£$X
µν = 2∇[µfX

ν] . (166)

When the full set of variational field equations is satisfied, so that the forces densities

fX
µ all vanish, it can be seen that each vorticity will be conserved by transport

along the corresponding flow lines, i.e. each constituent will satisfy a Kelvin type

conservation law of the form (128), namely

(ζXnX)£$X
µν = 0 . (167)

for arbitrary scalar fields ζX.

As in the corresponding relativistic case,10 one can go on to generalize the single

constituent helicity vector (119) to a vector valued helicity matrix defined by

ηXYµ =
1

2
εµνρσπX

ν$Y
ρσ . (168)

The antisymmetric part of this matrix will be exact in the sense of having the form

of a divergence,

η[XY]µ =
1

2
∇ν

(

εµνρσπY
ρπ

X
σ

)

, (169)

of an antisymmetric tensor, with the implication that it will automatically be closed

in the sense that its own divergence will vanish identically, i.e.

∇µη[XY]µ = 0 . (170)

It follows that if a constituent with label X say is characterized by the property of

irrotationality, meaning that $X
µν vanishes, and more particularly, as in Eq. (129),

in the case of a constituent that is superfluid, and thus characterized (on a meso-

scopic scale) by a momentum covector that is the gradient of a corresponding phase
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scalar ϕX, so that for any other label value Y say, the corresponding helicity matrix

component ηYXµ will also vanish, i.e. ηYXµ = 0, then the corresponding transposed

component will automatically be conserved, i.e. we shall have

πX
µ = ∇µϕX ⇒ $X

µν = 0 ⇒ ∇µηXYµ = 0 . (171)

Regardless of any irrotationality constraint that may be satisfied, it can be

seen — for the same reason as in the single constituent case characterized by

Eq. (126) — that the vanishing of the force density covector fX
µ in Eq. (160) will

always be sufficient to ensure that the divergence of the corresponding diagonal

component of the helicity matrix will vanish, i.e. that the constituent under con-

sideration will be subject to a helicity conservation law2,10 having the form

∇µηXXµ = 0 . (172)
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Appendix. Helicity Current in the Traditional 3 + 1 Formalism

The efficacity of 4-dimensionally covariant treatment is clearly demonstrated by

the ease with which the foregoing helicity conservation laws have been obtained

as almost obvious consequences of the dynamical equation. This contrasts with

treatment using a 3+1 space versus time decomposition, in which an equivalent

derivation of the helicity conservation law16 requires much greater algebraic effort

and ingenuity, as shown in this appendix.

The time and space components of the helicity current are found from Eq. (119)

and the specification (6) to be expressible as

η0 = −εijkπi∇jπk , (A.1)

ηi = π0ε
ijk∇jπk − εijkπj∇0πk + εijkπj∇kπ0 . (A.2)

In the following — as is usual within an Aristotelian–Cartesian framework —

the space indices will be replaced by the familiar arrow notation. We also introduce

the cross-product (φ×ϕ)i between two forms φi and ϕi as the contravariant vector

εijkφjϕk . The curl and 3-divergence of a vector V are defined respectively as

(curl V)i = εijk∇jVk and div V = ∇iV
i .

The time derivative will be written as ∇0 = ∂t.

With this notation, the helicity 4-vector will be given by

η0 = −π · curl π , (A.3)

η = π0 curl π − π × ∂tπ + π × ∇π0 . (A.4)
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Considering the example of the single perfect fluid model, the components of

the 4-momentum covector (102) are π0 = −E and π = mv, in which we have

introduced the total particle energy E = 1
2mv2 +mφ+χ. Hence the helicity current

reduces to

η0 = −2m2ω · v , (A.5)

η = −2mEω (A.6)

in terms of the kinematic local angular velocity ω = 1
2curl v (div ω = 0).

The conservation law of this helicity current will now be derived within the 3+1

spacetime decomposition, starting from Euler’s equation in the form18

m∂tv + ∇E + 2mω × v = 0 , (A.7)

whose contraction with mω yields

m2ω · ∂tv + mω · ∇E = 0 . (A.8)

Taking the curl of the Euler equation followed by the dot-product with the velocity

gives

m2v · ∂tω + m2v · curl(ω × v) = 0 . (A.9)

Adding the two equalities and simplifying, we obtain

2m2∂t(ω · v) + 2 div(mωE) + 2m2(v · ω)div v

+ 2m2v · (v · ∇ω) − 2m2v · (ω · ∇v) = 0 . (A.10)

Taking the cross-product of the Euler equation then the divergence, using the stan-

dard identity

∇(W ·V) = W × curl V + V × curl W + V · ∇W + W · ∇V , (A.11)

we obtain

div(m2v × ∂tv + mv × ∇E) + 8m2ω · (v × ω) + 4m2ω · (v · ∇v)

− 2m2(v · ω)div v − 2m2v · (v × curl ω)

− 2m2v · (v∇ω) − 2m2v · (ω · ∇v) = 0 . (A.12)

Combining this with Eq. (A.10), one obtains the spacetime decomposition of

Eq. (126), namely the local version of the original Moreau–Moffat helicity con-

servation law,15,16 in the form

2m2∂t(ω · v) = div(−2mωE) . (A.13)
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