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Outline

1 Superfluidity and superconductivity in the laboratory
Basic phenomenology and historical context
Phenomenological theories
Microscopic theories

2 Superfluidity and superconductivity in neutron stars
Theories of nuclear superfluidity and superconductivity
(quark pairing will be addressed by Prof. Armen Sedrakian)
Observational evidence

Disclaimer: these lectures will not cover all aspects of superfluidity
and superconductivity, but will focus on those most relevant to a basic
understanding of these phenomena in neutron stars.



Part 1: Superfluidity and
superconductivity in the laboratory



Discovery of "supraconductivity"
Heike Kamerlingh Onnes and his collaborators were the first to
liquefy helium in 1908.

On April 8th, 1911, H. K. Onnes and Gilles Holst
discovered that the electric resistance of
mercury dropped to almost zero at Tc ' 4.2 K

Onnes was awarded the Nobel Prize in 1913.

Two years later, lead was found to be also superconducting. Other
superconducting elements and metallic compounds were discovered
in the following decades.



Persistent electric currents

In 1914, Heike Kamerlingh Onnes designed
an experiment to measure the decay time of
a magnetically induced electric current in a
superconducting lead ring.

He noted “During an hour, the current was
observed not to decrease perceptibly”.

In superconducting rings, the decay time of induced electric currents
is not less than 100 000 years !
J. File and R. G. Mills, PRL 10, 93 (1963)
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Heat capacity

In 1932, Keesom and Kok found that the heat capacity of tin exhibits
a discontinuity at Tc thus showing that the superconducting transition
is of second order.

Keesom and Kok, Proc. Roy. Acad. Amsterdam 35, 743 (1932).



Heat capacity

At temperatures T < Tc the electron heat capacity is exponentially
suppressed suggesting the existence of an gap in the electron
energy spectrum.

Kittel, Introduction to Solid State Physics



Intermission: magnetostatics in a magnetic material
In a magnetic material, the set of microscopic magnetic
dipole moments µµµ give rise to a magnetization current
jjjm = c∇∇∇×MMM (cgs), where the magnetization MMM is the
macroscopic density of magnetic moments.

Introducing the auxiliary magnetic field HHH ≡ BBB − 4πMMM (to avoid
confusion BBB is usually referred to as the magnetic induction),
Maxwell-Ampere’s equation can be expressed as

∇∇∇×HHH =
4π
c

jjj free

with jjj free = jjj − jjjm is the "free" electric current associated with the
applied field.

Note however that HHH is not uniquely determined by jjj free since

∇∇∇ ·HHH = −4π∇∇∇ ·MMM

Therefore HHH does not generally coincide with the applied field.
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Intermission: magnetostatics in a magnetic material

Outside the material MMM = 0 and HHH thus coincides with the
applied magnetic field BBBa.

Inside the material, HHH is usually written as

HHH = HHHa + HHHd

where HHHa ≡ BBBa, and HHHd is called the demagnetizing field.
The magnetic induction is thus given by

BBB = HHH + 4πMMM = HHHa + HHHd + 4πMMM

Note that∇∇∇×HHHd = 0 and∇∇∇ ·HHHd = −4π∇∇∇ ·MMM.

In isotropic materials, HHHd = − γ

4π
MMM where the demagnetizing

factor γ depends on the geometry of the material. In particular,
γ = 0 for a long thin sample and a magnetic field applied along
the symmetry axis.
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Intermission: magnetic susceptibility

In order to completely determine the magnetic field in the material,
additional constitutive equations (i.e. equations of state) must be
provided.

Let us consider that the following relation for isotropic materials

4πMMM = χHHH

where χ is the magnetic susceptibility of the material. In such case,
we have

BBB = HHH + 4πMMM = (1 + χ)HHH

A material is
paramagnetic if χ > 0 under an applied field,
diamagnetic if χ < 0 under an applied field.

Typically |χdiamagnetic| ∼ 10−5 � χparamagnetic.

Some (e.g. ferromagnetic) materials may have a permanent
magnetization, i.e. χ 6= 0 even in the absence of an applied field.
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Meissner-Ochsenfeld effect
When placed in a weak magnetic field, a superconductor acts as a
perfect diamagnet: χ = −1 therefore B = 0.

In 1933, Walther Meissner and Robert
Ochsenfeld discovered that when a
material initially placed in a magnetic field
is cooled below the critical temperature,
the magnetic flux is expulsed.

This phenomenon showed that a superconductor is not just a perfect
conductor but correspond to a new thermodynamic state of matter.

Indeed, Ohm’s law jjj = σEEE implies EEE = 0 if σ → +∞. From Maxwell

Faraday equation,
∂BBB
∂t

= −c∇∇∇×EEE = 0: BBB should not change.
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Magnetic levitation

As a spectacular consequence of the Meissner-Ochsenfeld effect, a
magnet can be levitated over a superconducting material.

http://www.mn.uio.no/fysikk/english/research/groups/

amks/superconductivity/levitation/

http://www.mn.uio.no/fysikk/english/research/groups/amks/superconductivity/levitation/
http://www.mn.uio.no/fysikk/english/research/groups/amks/superconductivity/levitation/
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Critical magnetic field
Kamerlingh Onnes also discovered that superconductivity is
destroyed if the magnetic field H exceeds some critical value Hc .

For simplicity, let us ignore the demagnetizing field HHHd = 0 (e.g. long
thin sample) so that HHH = HHHa = BBBa and BBB = BBBa + 4πMMM.

H < Hc
χ = −1 inside the superconductor (B = 0) therefore −4πM = Ba.
H ≥ Hc
|χ| � 1 therefore 4πM = χH ≈ 0.

Experimentally, it is found that

Hc(T ) = H0

[
1−

(
T
Tc

)2]
Kittel, Introduction to Solid State Physics

The critical magnetic field implies
the existence of a critical electric
current.
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Thermodynamics of a superconductor
The thermodynamic state of a superconductor at a given temperature
T and magnetic intensity H is determined by the generalized free
energy

F (T ,H) = U − TS − 1
4π

HHH ·BBB.

Using the laws of thermodynamics and assuming the material is

incompressible, we find dF = −SdT − 1
4π

BBB · dHHH.

in the normal phase: M ∼ 0 therefore B ≈ H

FN(T ,H)− FN(T ,0) = − 1
4π

∫ H

0
BBB · dHdHdH = −H2

8π
in the superconducting phase: B = 0 (H < Hc)
FS(T ,H)− FS(T ,0) = 0

Moreover, we have FS(T ,Hc(T )) = FN(T ,Hc(T )).

FS(T ,H)− FN(T ,H) =
1

8π
(
H2 − Hc(T )2) ≤ 0 since H ≤ Hc(T )
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Thermodynamics of a superconductor
Noting that S = −∂F

∂T

∣∣∣∣
H

, we obtain for the latent heat of the transition

L = T (SN − SS) = − 1
4π

T
dHc

dT

This shows that the transition is first order for H < Hc (L 6= 0) and
second order for H = Hc (L = 0).

The heat capacity is given by C = T
∂S
∂T

∣∣∣∣
H

.

Assuming CN ≈ γT (normal metal at low temperatures), we find

CS ≈
(
γ −

H2
0

4πT 2
c

)
T +

3H2
0

4πT 4
c

T 3

Experimentally, CS is exponentially suppressed therefore γ =
H2

0

4πT 2
c

CS

CN

∣∣∣∣
T=Tc

= 3
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London theory
In 1935, Fritz and Heinz London proposed the following constitutive

equation for a (simply connected) superconductor: jjj = −nq2

m
AAA, where

n is the number density of superconducting particles, q their electric
charge, and m their mass.

Taking the curl of Maxwell-Ampere’s equation∇∇∇×BBB =
4π
c

jjj ,

∇∇∇×∇∇∇×BBB =∇∇∇(∇∇∇ ·BBB)−∇2BBB = −∇2BBB =
4π
c
∇∇∇× jjj , and using

London’s equation jjj = −nq2

m
AAA, we obtain

λL∇2BBB = BBB with λL =

√
mc2

4πnq2 .

Remarks
The only solution corresponding to a uniform field inside the
superconductor is BBB = 0.
London’s equation implies the following gauge: ∇∇∇ ·AAA = 0, and
AAA⊥ = 0 at the surface of the superconductor since jjj⊥ = 0.
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AAA⊥ = 0 at the surface of the superconductor since jjj⊥ = 0.



Application: semi-infinite superconductor

Let us consider a semi-infinite superconducting material occupying
the space with x ≥ 0. A magnetic field is applied along the z axis.

The solution of London’s equation in the superconductor is given by

B(x) = B(0) exp(−x/λL).

The magnetic field penetrates inside the superconductor only within
distances of the order of λL, which is thus called the London
penetration length.

The electron current is mainly located in the surface since

jy (x) = − c
4π

dB
dx

=
cB(0)

4πλL
exp(−x/λL), and jx = jz = 0.

Note that in thin films with thickness d � λL, the Meissner effect is
not complete therefore the thermodynamic approach breaks down.
The critical field Hc parallel to the film is very high.
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Pippard theory

Pippard proposed to extend London theory so as to allow for
non-local effects:

jjj(rrr) = − 3nq2

4πmξ0

∫
d3r ′

RRR(RRR ·AAA(r ′r ′r ′))

R4 exp
(
−R
ξ

)
where RRR = rrr − r ′r ′r ′, and ξ represents a coherence length.

In the presence of impurities,
1
ξ

=
1
ξ0

+
1
`

where ` is the mean-free

path and ξ0 is the coherence length of a pure sample. London’s
theory corresponds to the limit `→ +∞ and ξ0 → 0:

ji (rrr) ≈ − 3nq2

4πmξ0
Aj (rrr)

∫
d3r ′

RiRj

R4 exp
(
−R
ξ0

)
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"Soft" vs "hard" superconductors
In 1935, Lev Vasilievich Shubnikov at the Kharkov
Institute of Science and Technology in Ukraine
discovered that some so called "hard" or type II
superconductors (as opposed to "soft" or type I
superconductors) exhibit two critical fields.

Superconducting magnetization curves of annealed polycrystalline lead and
lead-indium alloys at 4.2 K. (A) lead; (B) lead-2.08 wt. % indium; (C) lead-8.23 wt. %
indium; (D) lead-20.4 wt.% indium. From Kittel, Introduction to Solid State Physics.



"Soft" vs "hard" superconductors

Kittel, Introduction to Solid State Physics

The Meissner effect is incomplete between Hc1 and Hc2 (B 6= 0).

Hc2 is generally much higher than Hc in "soft" superconductors,
Tc is also higher. "Hard" superconductors are thus used to
generate strong magnetic fields.
Hc2 is limited by spin paramagnetism of conduction electrons,
see Clogston, PRL 9, 266 (1962).
Except for vanadium, technetium and niobium, "hard"
superconductors consist of metallic compounds and alloys.



Discovery of superfluidity
During the 1930s, it was found by several groups that below
Tλ = 2.17 K, helium does not behave like an ordinary liquid.

“by analogy with superconductors, the
helium below the λ-point enters a special
state which might be called superfluid.”
Kapitza, Nature 141, 74 (1938).

Kapitza received the Nobel Prize in 1978.

“the observed type of flow most certainly cannot
be treated as laminar or even as ordinary
turbulent flow.”
Allen and Misener, Nature 141, 75 (1938).

About the history of superfluidity:
Balibar in “History of Artificial Cold, Scientific, Technological and Cultural
Issues”, Boston Studies in the Philosophy and History of Science 299
(Springer, 2014), pp.93-114
Balibar, J. Low Temp. Phys. 146, 441 (2007).



Lambda point
The specific heat of helium exhibits a sudden change at Tλ = 2.17 K:

Keesom and Clusius, Proc. Roy. Acad. Amsterdam 35, 307 (1932).

Singularities in the specific heat are generally associated with
order-disorder transitions (e.g. ferromagnetic transition).



Phase diagram of helium
Unlike usual liquids, helium does not solidify at low temperatures
under the atmospheric pressure:

The horizontal melting curve indicates that the entropy of the liquid is
the same as that of the solid, since from the Clausius-Clapeyron

equation
dP
dT

=
Sliq − Ssol

Vliq − Vsol
≈ 0.



Heat transport in He II
Contrary to ordinary liquids,

He II does not follow Fourier’s law for the heat current
JJJ = −λ∇∇∇T , except in extremely fine slits or capillaries. Actually,
the ratio J /|∇T | diverges as |∇T | → 0 !
He II does not boil:

T > Tλ T < Tλ

"super heat conductivity", Keesom.
Heat in He II is not transported according to classical laws.
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K. Onnes observations about liquid helium

Incidentally, Kamerlingh Onnes and his
collaborators also discovered superfluidity
without realizing it the same day they discovered
superconductivity!

Onnes noted about liquid helium:
“Just before the lowest temperature [about 1.8 K]
was reached, the boiling suddenly stops...”

About the history of superconductivity:
van Delft&,Kes, Phys. Today, 63, 9, 38 (2010)

http://www.lps.ens.fr/~balibar/Allen-boiling.mpg

http://www.lps.ens.fr/~balibar/Allen-boiling.mpg
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Intermission: viscous flow

z

y

2R

L

v

In ordinary liquids, the mass flow Q of liquid through a pipe of length
L� R is given by Hagen-Poiseuille law

Q = ρ
πR4|∆P|

8ηL

where ρ is the mass density, |∆P| is the pressure drop and η the
shear viscosity.



"Superfluidity"

"superleak": He II can flow without resistance through very
narrow slits and capillaries, almost independently of the pressure
drop.

"superflow": persistent flow of He II (note the similarity with
persistent currents in superconductors)
Reppy and Depatie, PRL 12, 187 (1964)

"superfluidity" disappears beyond some critical velocity (note
the similarity with critical currents in superconductors)
on the other hand, He II exhibits similar viscosity as He I in
experiments with oscillating disks.

http://www.lps.ens.fr/~balibar/Allen-superflow.mpg

He II does not follow the classical laws of hydrodynamics.

http://www.lps.ens.fr/~balibar/Allen-superflow.mpg
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Rollin film

He II flows up over the sides of a beaker and drip off the bottom (for
ordinary liquids, the so called Rollin film is clamped by viscosity).



Fountain effect

Allen and Jones, Nature 141, 243 (1938)
http://www.lps.ens.fr/~balibar/Allen-fountain.mpg

The superfluid flows from the cooler to the hotter region. From the
second law of thermodynamics, we thus conclude that the superfluid
carries no heat (no entropy).

http://www.lps.ens.fr/~balibar/Allen-fountain.mpg
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Hess-Fairbank effect

Fritz London predicted in 1954 the analog of the Meissner effect for
superfluid helium, which was experimentally observed by Hess and
Fairbank in 1967.
Hess and Fairbank, PRL 19, 216 (1967)

Initially at rest, He II remains at rest if the container is set into (slow)
rotation as for a perfect fluid with no viscosity.

Now, liquid helium is initially set into rotation with angular frequency
ω < ωc .

at T > Tλ the liquid rotates classically with angular momentum
L0 = I0ω
at T < Tλ the superfluid rotates with a reduced angular
momentum L(T ) = I(T )ω with I(T ) < I0 and I(0) = 0.

This phenomenon shows that a superfluid is not just a perfect fluid
but corresponds to a new thermodynamic state of matter.
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Superfluidity and Bose-Einstein condensation

Satyendra Nath Bose and Albert Einstein
predicted in 1925 that at low enough
temperatures an ideal gas of bosons
condense into a macroscopic quantum
state. But this prediction was largely
ignored or considered as incorrect.

The association between Bose-Einstein
condensation and superfluidity was first
advanced by Fritz London. It was a key idea for
developing the microscopic theory of
superfluidity and superconductivity.
London, Nature 141, 643 (1938)
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Illustration of BEC from MIT group



Ideal Bose gas
Let us consider an ideal Bose gas of N noninteracting particles. At
T = 0, all particles lie in the lowest single-particle energy state ε = 0.
The occupancy of this state still remains macroscopic at temperature

T < Tc =
2π~2

mζ(3/2)2/3 n2/3 ≈ 3 K for helium

At T > 0, the occupancy of the state ε0 = 0 is given by the

Bose-Einstein distribution N0 =
1

exp[β(ε0 − µ)]− 1
, where

β = 1/(kBT ) and µ is the chemical potential. As T → 0,

µ ∼ −kBT
N
→ 0.

The occupancy of excited states ε > ε0 is given by∫ +∞

0
dε

N (ε)

exp(βε)− 1
≈ N

(
T
Tc

)3/2

with N (ε) the density of states.

At T = Tc , N0 = 0, while at T = 0, N0 = N. In liquid helium,
N0/N ≈ 6− 8% at T = 0 due to interactions between atoms.
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Two-fluid model
Following the suggestion of Fritz London that
superfluidity is related to Bose-Einstein condensation,
Laszlo Tisza postulated that He II contains two
disctinct components:

a superfluid that carries no entropy (condensate)
a normal viscous fluid.

This model explained all the observed phenomena and
predicted thermomechanical effects like “temperature
waves”. Tisza, Nature 141, 913 (1938).

Although Landau did not believe that superfluidity is
related to BEC (he never cited F. London!), he
developed the two-fluid model based on
“quasiparticle” excitations in quantum fluids.
Landau, Phys. Rev. 60, 356 (1941).

This two fluid model was later extended to superconductors.
Gorter, Prog. Low Temp. Phys. 1, 1 (1955)
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Landau vs Tisza and London
Although the two-fluid models of Tisza and Landau were very similar,
they led to different predictions for the speed u2 of temperature
waves (which Landau called “second sound”) at low temperatures.

Tisza

Landau

Measurements by Vasilii Peshkov in
1960 showed that Landau was right.
Peshkov, Sov. Phys. JETP 11, 580 (1960).
Donnely, Physics Today 62, 34 (2009).

But London and Tisza original ideas
that superfluidity is related to BEC
later proved to be correct.

Tisza considered that the normal fluid was made of non-condensed
atoms while for Landau it was made of “quasiparticles”. The density
of non-condensed atoms is a property of the liquid at rest (ground
state) while the density of “quasiparticles” is a property of the
superflow (excited state).
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Landau’s theory of He II

Although helium atoms are strongly interacting, Landau assumed that
at low temperatures He II can be described in terms of
weakly-interacting “quasiparticles”, which do not correspond to
material particles but to complex many-body motions (excitations).

Let us consider a macroscopic body of mass M0 flowing through the
superfluid. At low T , its velocity VVV can be changed if a quasiparticle
of energy E(p) and momentum ppp is created.

energy conservation
1
2

M0V 2 >
1
2

M0V ′ 2 + E(p)

momentum conservation M0VVV = M0V ′V ′V ′ + ppp

⇒ E(p) < VVV · ppp − p2

2M0
≈ VVV · ppp since M0 is macroscopic.

The flow is resistanceless if V < Vc = min
{

E(p)

p

}
.
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weakly-interacting “quasiparticles”, which do not correspond to
material particles but to complex many-body motions (excitations).

Let us consider a macroscopic body of mass M0 flowing through the
superfluid. At low T , its velocity VVV can be changed if a quasiparticle
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Landau’s theory of He II
For a gas of noninteracting particles, the “quasiparticle” excitations

have energies E(p) =
p2

2m
therefore Vc = 0: the ideal Bose gas is not

superfluid.

For He II, Landau assumed two
different kinds of “quasiparticles”:

phonons at low p
E(p) ≈ csp (sound waves)
rotons at high p

E(p) ≈ ∆ +
(p − p0)2

2m0

The critical velocity is given by Vc =
∆

p0
≈ 60 m s−1. This value has

been confirmed by ion propagation experiments.
Ellis and McClintock, Philos. Trans. R. Soc. London, Ser. A, 315, 259 (1985).
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Phonons and rotons
In 1947, Bogoliubov calculated the energy of quasiparticles in a
weakly interacting dilute Bose gas using many-body techniques:

E(p) =

√(
p2

2m

)2

+ p2c2
s ≈ csp at low p

J. Phys.(USSR) 11, 23 (1947)

This shows that a BEC of interacting particles is superfluid.

Landau thought that rotons are related to
vortices. Feynman argued that rotons are
atomic size “smoke rings”.

Rotons have also been interpreted as a
characteristic feature of density fluctuations
marking the onset of crystallization (“ghosts of
Bragg spots”, Nozières).
J. Low Temp. Phys. 137, 45 (2004).
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Bose-Einstein condensation in dilute atomic gases
On June 5, 1995, the first dilute
BEC was produced by Eric Cornell
and Carl Wieman at the University
of Colorado at Boulder NIST-JILA,
with ∼ 2000 rubidium 87Ru atoms
cooled to 170 nK.

Shortly thereafter, Wolfgang Ketterle’s team at MIT obtained a BEC of
∼ 5× 105 sodium 23Na atoms cooled to 2 µK.

For their achievements,
Cornell, Ketterle and
Wieman were awarded the
2001 Nobel Prize in
Physics.

Since that time, dilute BEC have been produced by other groups
using various kinds of atoms.



Flow quantization and vortices
A superfluid is a quantum liquid: its flow is quantized according to the
Onsager-Feynman quantization condition∮

vsvsvs · d `̀̀ =
Nh
m

with N = 0,1, etc.

where vsvsvs is the “superfluid velocity”.

A superfluid rotating at angular frequency
ω in a bucket of radius R is threaded by

N =
2mπR2ω

h
quantized vortex lines,

each of which carries an angular
momentum ~.

In between vortices, the flow is
“irrotational”∇∇∇× vsvsvs = 0.

Yarmchuk, Gordon, and Packard, PRL43, 214 (1979).

vsvsvs is not a true velocity: the Onsager-Feynman condition is nothing

but the Bohr-Sommerfeld quantization
∮

ppp · d `̀̀ = Nh with ppp = mvsvsvs.

Carter and Khalatnikov,Phys.Rev.D45,4536(1992)
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Abrikosov state
In 1957, Alekseï Alekseïevitch Abrikosov predicted that
a "hard" superconductor is threaded by a regular array
of magnetic flux tubes for Hc1 < H < Hc2. He was
awarded the Nobel Prize in Physics in 2003.

Abrikosov, Soviet Physics JETP 5, 1174 (1957)

Kittel, Introduction to Solid State Physics

Below Hc1, the magnetic flux is expelled inside the
superconductor.
At H = Hc1, the first magnetic flux tubes penetrate the
superconductor.
For Hc1 < H < Hc2, flux tubes arrange themselves on a regular
array with the lattice spacing determined by H (Shubnikov state) .
At H = Hc2, the core of magnetic flux tubes overlap and
superconductivity disappears.
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Abrikosov vortex state

Pb-4at%In

Essmann & Trauble, Physics Letters
24A, 526 (1967)

NbSe2

Hess et al., Phys. Rev. Lett. 62, 214
(1989)



Magnetic flux quantization
F. London predicted in 1948 that the magnetic flux inside a
superconducting loop must be quantized.

This was experimentally confirmed in 1961 by Bascom Deaver (PhD)
under the supervision of William Fairbank at Stanford University, and
independently by Robert Doll and Martin Näbauer at the Low
Temperature institute in Hersching (Bavaria).
Deaver & Fairbank, PRL 7, 43 (1961)
Doll & Näbauer, PRL 7, 51 (1961)

See also 100 Years of Superconductivity, published by Horst Rogalla, Peter
H. Kes, CRC Press, Taylor & Francis group, 2012, p.161
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Magnetic flux quantization
Let us consider the Bohr-Sommerfeld quantization rule:∮

ppp · d`d`d` = Nh with N = 0,1, etc.

From classical mechanics, we know that ppp = mvvv +
q
c

AAA. Inside the
superconductor, BBB = 0 therefore∇∇∇× jjj = 0 (Meissner effect).
Since jjj = nqvvv , and∮ (

mvvv +
q
c

AAA
)
· d`d`d` =

m
nq

∫
∇∇∇× jjj · dSdSdS +

q
c

∫
BBB · dSdSdS, we finally obtain

Φ =

∫
BBB · dSdSdS = NΦ0 with Φ0 = hc/q.

Remarks:
Φ0 is called a "fluxoid" or "fluxon".
Φ = Φext + Φs. Since Φext is not quantized, Φs must adjust itself
accordingly !
Experimentally Φ0 = hc/(2e) therefore the superconducting
particles carry a charge q = 2e.
The superconducting current will persist unless the flux change.
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Superconducting elements

The highest Tc for simple metals is achieved for niobium (Tc=9.2K)
and lead (7.2K).

Surprisingly, copper, silver and gold, three of the best metallic
conductors, are not superconducting !



Timeline of superconductor discoveries
High-Tc cuprate superconductors were discovered by IBM
researchers Georg Bednorz and K. Alex Müller in 1986. They were
awarded the Nobel Prize in Physics in 1987.

Very recently sulfur hybride has been found to be superconducting
(under high pressures) at Tc = 203 K.
Drozdov et al., Nature 525, 73 (2015)



Towards a microscopic theory of superconductivity

In 1950, Landau and Ginzburg developed
a phenomenological theory of
superconductivity. Ginzburg shared the
2003 Nobel Prize in Physics with
Abrikosov.

A microscopic theory of
superconductivity was proposed in
1957 by Bardeen, Cooper and
Schrieffer. Gorkov later shown that
the Ginzburg-Landau model can
be derived from the BCS theory.
BCS shared the 1972 Nobel Prize
in Physics.



Landau theory of second order phase transitions

Second-order phase transitions are associated with spontaneous
symmetry breaking, and can be characterized by an order
parameter η, such that η(T ≥ Tc) = 0 and η(T < Tc) 6= 0.

Examples:
liquid-gas phase transition at the critical point η = vliq − vgas

ferromagnetic-paramagnetic transition η = M



Landau theory of second order phase transitions

Assumptions:
the free energy F has the symmetry of the relevant Hamiltonian
F is an analytic function of η
thermal fluctuations are negligible (mean-field approximation).

For T close to Tc , the free energy can be expanded in a Taylor series

F (η,T ) = F (η = 0,T ) + αη2 +
β

2
η4 + . . .

The equilibrium state of the system at any given T is determined by
the minimum of F with respect to η.

2nd order phase transition (unique η at Tc): no odd powers of η
β > 0 at any T otherwise there would be no minimum at finite η
(infinite energy), therefore β(T ) = β0 + . . . with β0 > 0.
Above Tc , the only minimum is η = 0 therefore
α(T ) = α0(T − Tc) + . . . with α0 > 0
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Landau theory of second order phase transitions

The equilibrium state is such that
∂F
∂η

∣∣∣∣
T

= 0⇒ 2αη + 2βη3 = 0.

Note that this condition is necessary but not sufficient: F must be a
minimum for the state to be stable.

Considering that η is a real

number, the solutions are
η = 0 for T > Tc ,

η =

√
−α
β

=

√
α0

β0
(Tc − T ) for T ≤ Tc .

Landau’s theory thus predicts some kind of universality of
second-order phase transitions. For instance, η ∝ (Tc − T )1/2.

Note that Landau theory is a mean field theory, and does not
include spatial fluctuations of the order parameter.
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Ginzburg-Landau theory of superconductivity
Ginzburg and Landau extended this theory to superconductivity by
postulating the following:

the order parameter has the nature of a microscopic wave
function Ψ,
|Ψ|2 = ns, where ns is the density of superconducting particles,
FS is invariant under gauge transformations Ψ→ Ψ exp(iθ),
thermal fluctuations are negligible (mean-field approximation).

For T close to Tc , the free energy can be expanded in a Taylor series

FS = FN + α|Ψ|2 +
β

2
|Ψ|4 + . . .

T > Tc , Ψ = 0.

T ≤ Tc , |Ψ|2 = ns = −α
β

and FN − FS =
α2

2β
. On the other hand,

FN − FS =
H2

c

8π
therefore Hc =

√
4πα2

β
∝ (Tc − T ).
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Ginzburg-Landau theory of superconductivity
Let us consider a more general situation, whereby Ψ is not spatially
uniform (fluctuations) and the superconductor is placed in a magnetic
field.

For T close to Tc , the free energy becomes

FS = FN + α|Ψ|2 +
β

2
|Ψ|4 +

1
2m

∣∣∣∣~i∇∇∇Ψ− qAAAΨ

∣∣∣∣2 +
B2

8π
+ . . .

Note that
1

2m

∣∣∣∣~i∇∇∇Ψ− qAAAΨ

∣∣∣∣2 is the lowest order gradient term that is

gauge invariant.

Minimizing with respect to Ψ and AAA yields

1
2m

[
~
i
∇∇∇− qAAA

]2

Ψ + αΨ + β|Ψ|2Ψ = 0

jjj =
q

2m
~
i

[
Ψ∗∇∇∇Ψ−Ψ∇∇∇Ψ∗

]
− q2

m
|Ψ|2AAA
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Fluctuations of the order parameter
Let AAA = 0 and jjj = 0.

jjj =
q

2m
~
i

[
Ψ∗∇∇∇Ψ−Ψ∇∇∇Ψ∗

]
= 0 therefore Ψ is real.

− ~2

2m
∇2Ψ + αΨ + βΨ3 = 0, or equivalently setting ϕ ≡

√
β

|α|
Ψ

ξ2∇2ϕ+ ϕ(1− ϕ2) = 0 with ξ ≡

√
~2

2m|α|

For a semi-infinite superconductor in x ≥ 0, ϕ(x) = tanh
(

x√
2ξ

)
.

Therefore ϕ(0) = 0 at the boundary between the normal and
superconducting phases, while deep inside the superconductor
ϕ(x → +∞) = 1 so that Ψ(x → +∞) =

√
|α|/β.

The coherence length ξ is the characteristic distance over which
Ψ(rrr) fluctuates.
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− ~2

2m
∇2Ψ + αΨ + βΨ3 = 0, or equivalently setting ϕ ≡

√
β

|α|
Ψ

ξ2∇2ϕ+ ϕ(1− ϕ2) = 0 with ξ ≡

√
~2

2m|α|

For a semi-infinite superconductor in x ≥ 0, ϕ(x) = tanh
(

x√
2ξ

)
.

Therefore ϕ(0) = 0 at the boundary between the normal and
superconducting phases, while deep inside the superconductor
ϕ(x → +∞) = 1 so that Ψ(x → +∞) =

√
|α|/β.

The coherence length ξ is the characteristic distance over which
Ψ(rrr) fluctuates.
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London penetration length

Let us now assume Ψ(rrr) =
√

ns =
√
|α|/β (no spatial fluctuations) in

a weak magnetic field B � Hc .

The second Ginzburg-Landau’s equation reduces to London’s
equation :

jjj =
q

2m
~
i

[
Ψ∗∇∇∇Ψ−Ψ∇∇∇Ψ∗

]
− q2

m
|Ψ|2AAA = −nsq2

m
AAA

⇒ λL∇2BBB = BBB with λL =

√
mc2

4πnsq2 =

√
mc2β

4π|α|q2

The London penetration length λL is the characteristic distance
over which BBB penetrates the superconductor.
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Two characteristic length scales
The Ginzburg-Landau theory predicts that both λL and ξ scale like
|α|−1/2 ∝ (Tc − T )−1/2 but their ratio is constant

κ ≡ λL

ξ
=

mc
q~

√
β

2π

One can show that

if κ < 1/
√

2, the superconductor is "soft",

if κ > 1/
√

2, the superconductor is "hard".

Roughly speaking, at Hc1 the first fluxoid nucleates. It carries a
quantum flux Φ0: the magnetic field inside is ∼ Hc1 and extends over
a distance ∼ λL. At Hc2, fluxoids are the most densely packed with a
spacing ∼ ξ and the magnetic field penetrates almost uniformly the
superconductor.

Therefore Hc1 ∼
Φ0

πλ2
L

and Hc2 ∼
Φ0

πξ2 . Note that
Hc2

Hc1
∼ λL

ξ
.

If ξ & λL, fluxoids cannot form.
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BCS theory of superconductivity
The discovery of the isotope effect, Tc ∝ M−α, suggested that
crystal lattice dynamics play a role in superconductivity.

In a superconductor, the dynamical
distorsions of the crystal lattice (phonons)
can induce an attractive effective
interaction between electrons of
opposite spins.

Electrons form pairs which behave like bosons and can thus
condense below a certain critical temperature. A superconductor
can thus be viewed as a charged superfluid.

The pairing scenario suggested that fermionic atoms could also be
superfluid. Osheroff found in 1971 that 3He is superfluid below 2.5
mK. The first dilute fermionic superfluids were produced in 2003.
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Effective electron-electron interaction
Two electrons in vacuum repel each other due to the instantaneous

Coulomb interaction V (r1r1r1, t1, r2r2r2, t2) =
e2

r
δ(t) with r = |r1r1r1 − r2r2r2| and

t = t1 − t2.

Its Fourier transform is

Ṽ (qqq, ω) =
1
Ω

∫
dt
∫

d3r V (rrr)e−i(qqq·rrr+ωt) =
4πe2

Ωq2 .

Two conduction electrons in a solid interact with other electrons and
with ions. Their "bare" interaction is thus "dressed" by the medium.

Typical scales in a solid:
conduction electrons of density n (Fermi gas)

Fermi energy εF =
1
2

mv2
F where vF =

~kF

m
is the Fermi velocity

and kF = (3π2n)1/3

low-energy longitudinal lattice vibrations (phonons)

ion plasma frequency ωp =

√
4πZ 2e2nI

M
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Bardeen-Pines interaction
Approximating a solid by a "jelium", the effective interaction
between electrons is approximately given by (q � kF , ω � cskF ,
cs � vF )

Veff(qqq, ω) =
4πe2

q2 + q2
TF︸ ︷︷ ︸

screening

+
4πe2

q2 + q2
TF

ω(qqq)2

ω2 − ω(qqq)2︸ ︷︷ ︸
polarization

where ω(qqq) ≈ csq, cs = ωp/qTF is the sound speed, and

qTF =

√
4πe2 ∂n

∂µ
is the Thomas-Fermi wave vector.

Charge screening makes the Coulomb interaction much less

repulsive at large distances V (r) =
e2

r
→ Veff(r) =

e2

r
e−qTFr

Polarization of the ion lattice leads to retarded interaction: the
distortion of the lattice induced by the first electron is felt at a
later time by the second electron.

The effective electron-electron interaction induced by the polarization
of the ion lattice is attractive for ω < ω(qqq) and repulsive otherwise.
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Cooper problem (1956)

Let us consider two conduction electrons of opposite spins on the
Fermi surface interacting through an instantaneous effective attractive
pairing interaction of the form

Veff(r1r1r1, t1, r2r2r2, t2) = −V0δ(rrr)δ(t) with V0 > 0.

where rrr = r1r1r1 − r2r2r2 and t = t1 − t2.

Its Fourier transform can be easily calculated

Ṽeff(qqq, ω) =
1
Ω

∫
dt
∫

d3r Veff(rrr , t)e−i(qqq·rrr+ωt) =
−V0

Ω
.

This interaction leads to arbitrarily large energy transfers and will thus
need to be regularized.

In the following, we shall consider a time-independent interaction of
the more familiar kind Veff(r1r1r1, r2r2r2) = Veff(rrr) with a suitable prescription
to eliminate divergences.
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Cooper problem (1956)
The two-electron wave function can be expanded into plane waves

ψ(r1r1r1σ1, r2r2r2σ2) =
∑
k1k1k1,k2k2k2

ψ̃(k1k1k1,k2k2k2)ei(k1k1k1·r1r1r1+k2k2k2·r2r2r2)χ(σ1, σ2)

Let us introduce the center-of-mass coordinate RRR = (r1r1r1 + r2r2r2)/2 and
relative coordinate rrr = r1r1r1 − r2r2r2, total wave vector KKK = k1k1k1 + k2k2k2 and
relative wave vector kkk = k1k1k1 − k2k2k2, the wave function can be
equivalently

ψ(RRR, rrr) =
∑
k1k1k1,k2k2k2

ψ̃(KKK ,kkk)ei(KKK ·RRR+kkk·rrr)χ(σ1, σ2)

Assumptions:
The electron pair has zero net momentum KKK = 0

Note that kkk · rrr = kkk · r1r1r1 − kkk · r2r2r2: electrons have opposite momenta.

Electrons have opposite spins χ =
1√
2

[(
1
0

)(
0
1

)
−
(

0
1

)(
1
0

)]
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Cooper problem (1956)
In the following, we shall focus on the spatial part of the wave
function, which thus becomes ψ(rrr) =

∑
kkk

ψ̃(kkk)eikkk·rrr , and

ψ̃(−kkk) = ψ̃(kkk) as a consequence of the Pauli principle.

Thermodynamic limit:
Let us take the electron number N → +∞, the volume Ω→ +∞ but
N/Ω finite. Since bulk properties do not depend on the shape of the
system, let us consider a cubic box of size L (Ω = L3).

Born- von Karman periodic boundary conditions:

ψ(x + L, y + L, z + L) = ψ(x , y , z)

⇒ kx =
2πNx

L
, ky =

2πNy

L
, kz =

2πNz

L

In the thermodynamic limit,
1
Ω

∑
kkk

→
∫

d3k
(2π)3



Cooper problem (1956)

The two-electron Schrödinger equation can be written as[
− ~2

2m
(∇1∇1∇1 +∇1∇1∇1) + Veff(r1r1r1, r2r2r2)

]
ψ(r1r1r1, r2r2r2) =

(
ε+ 2

~2k2
F

2m

)
ψ(r1r1r1, r2r2r2)

Expanding the two-electron wave function into plane waves leads to∫
d3k ′

(2π)3

[
~2k ′2

m
+ Veff(rrr)

]
ψ̃(k ′k ′k ′)eik ′k ′k ′·rrr =

(
ε+

~2k2
F

m

)∫
d3k ′

(2π)3 ψ̃(k ′k ′k ′)eik ′k ′k ′·rrr

Multiplying by e−ikkk·rrr and integrating over rrr yields

~2k2

m
ψ̃(kkk) + Ω

∫
d3k ′

(2π)3 Ṽeff(k ′k ′k ′ − kkk)ψ̃(k ′k ′k ′) = (ε+ 2εF ) ψ̃(kkk)

where Ṽeff(qqq) =
1
Ω

∫
d3r Veff(rrr)e−iqqq·rrr and εF =

~2k2
F

2m
.

Note:
∫

d3r ei(k ′k ′k ′−kkk)·rrr = (2π)3δ(k ′k ′k ′ − kkk)
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Cooper problem (1956)

How to regularize the effective interaction?

We have seen that the effective interaction is attractive only for
electrons with energies ω < ω(qqq).
Moreover, electrons must have an energy greater than εF .

We shall therefore regularize the effective pairing interaction as
follows:

Ṽeff(k ′k ′k ′−kkk) =

 −
V0

Ω
if
∣∣∣∣~2k2

2m
− εF

∣∣∣∣ < ~ωD and
∣∣∣∣~2k ′ 2

2m
− εF

∣∣∣∣ < ~ωD ,

0 otherwise

where ωD = qDcs is the Debye frequency and qD = (6π2nI)
1/3.



Cooper problem (1956)

The Schrödinger equation[
~2k2

m
− ε− 2εF

]
ψ̃(kkk) = −Ω

∫
d3k ′

(2π)3 Ṽ (k ′k ′k ′ − kkk)ψ̃(k ′k ′k ′)

thus reduces to[
~2k2

m
− ε− 2εF

]
ψ̃(kkk) = −V0

∫
D

d3k ′

(2π)3 ψ̃(k ′k ′k ′) ≡ −V0C

ψ̃(kkk) = − V0C
2ζ(kkk)− ε

with ζ(kkk) ≡ ~2k2

2m
− εF

Integrating over kkk leads to the self-consistency condition

− 1
V0

=

∫
D

d3k
(2π)3

1
2ζ − ε

=

∫ ~ωD

0

N (ζ)dζ
2ζ − ε

with N (ζ) =

∫
d3k

(2π)3 δ(ζ − ζ(kkk)) is the density of states.
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Integrating over kkk leads to the self-consistency condition

− 1
V0

=

∫
D

d3k
(2π)3

1
2ζ − ε

=

∫ ~ωD

0

N (ζ)dζ
2ζ − ε

with N (ζ) =

∫
d3k

(2π)3 δ(ζ − ζ(kkk)) is the density of states.
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Cooper problem (1956)

Considering that ~ωD � εF , we find

− 1
V0

=

∫ ~ωD

0

N (ζ)dζ
2ζ − ε

≈ N (0)

∫ ~ωD

0

dζ
2ζ − ε

=
1
2
N (0) ln

(
ε

ε− 2~ωD

)
Assuming |ε| � ~ωD, we finally obtain

ε ≈ −2~ωD exp
(
− 2
N (0)V0

)
ε < 0 therefore the Cooper pair is bound, even for arbitrarily
small interaction.
The bound state would not exist without the Fermi sea
(N (0) = 0).
ε cannot be obtained using perturbation theory.



Cooper pair
The wave function of a Cooper pair of electrons is given by

ψ(rrr) = Ω

∫
d3k

(2π)3 ψ̃(kkk)eikkk·rrr = −ΩV0C
∫

d3k
(2π)3

eikkk·rrr

2ξ(kkk)− ε
.

The mean-square radius is

〈r2〉 =

∫
d3r |ψ(rrr)|2r2∫
d3r |ψ(rrr)|2

=
4
3
~2v2

F
ε2

Therefore the typical size of a Cooper pair is

ξ0 =
√
〈r2〉 =

2√
3
~vF

ε
∼ εF

ε
`� `

where ` ∼ n−1/3 is the mean inter electron spacing.

The Fermi sea is unstable against the formation of pairs. The
presence of the other electrons cannot be ignored.
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BCS theory

The Cooper model suggests that the ground state of a
superconductor should be constructed from electron pairs

ΨN = A
{
ψ(r1r1r1σ1, r2r2r2σ2) · · ·ψ(rN−1rN−1rN−1σN−1, rNrNrNσN)

}
where A is to indicate that the wave function must be properly
antisymmetrized as imposed by the Pauli principle. Expanding each
pair wave function into plane waves, we obtain

ΨN =
∑

k1k1k1···kN/2kN/2kN/2

ψ̃(k1k1k1) · · · ψ̃(kN/2kN/2kN/2)A
{

eik1k1k1·(r1r1r1−r2r2r2) · · · eikN/2kN/2kN/2·(rN−1rN−1rN−1−rNrNrN )

}
χ(σ1 · · ·σN)

Algebraic manipulations using this representation are quite
cumbersome. It is much simpler to use the second quantization
notation.



BCS theory

|ΨN〉 =
∑

k1k1k1···kN/2kN/2kN/2

ψ̃(k1k1k1) · · · ψ̃(kN/2kN/2kN/2)c†k1k1k1↑c
†
−k1k1k1↓ · · · c

†
kN/2kN/2kN/2↑c

†
−kN/2kN/2kN/2↓|Ψ0〉

=

[∑
kkk

ψ̃(kkk)c†kkk↑c
†
−kkk↓

]N/2

|Ψ0〉

where |Ψ0〉 denotes the vacuum state (no particles), while c†kkkσ (ckkkσ) is
the Fermi creation (annihilation) operator of a particle with wave
vector kkk and spin σ.

The antisymmetry of the wave function is guaranteed by the
anticommutation rules:

{c†kkkσ, ck ′k ′k ′σ′} ≡ c†kkkσck ′k ′k ′σ′ + ck ′k ′k ′σ′c
†
kkkσ = δkkkk ′k ′k ′δσσ′

{c†kkkσ, c
†
k ′k ′k ′σ′} = 0 , {ckkkσ, ck ′k ′k ′σ′} = 0.

|ΨN〉 contains a huge number of terms of order ∼ 101022
!



BCS theory

Bardeen, Cooper and Schrieffer adopted a mean-field approach:
the occupancy of the state kkk only depends on the average occupancy
of the other states.

|ΨBCS〉 =
∏

kkk

[
u(kkk) + v(kkk)c†kkk↑c

†
−kkk↓

]
|Ψ0〉

The normalization of the wave function 〈ΨBCS|ΨBCS〉 = 1 yields
|u(kkk)|2 + |v(kkk)|2 = 1.

The price to be paid is that |ΨBCS〉 does not define a state with a
well-defined number N of electrons:

N = 〈ΨBCS|
∑
kkkσ

c†kkkσckkkσ|ΨBCS〉 = 2
∑

kkk

|v(kkk)|2 .

However, the fluctuations are vanishing small in the thermodynamic

limit:

√
(δN)2

N
∼ N

−1/2 → 0 as N → +∞.
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BCS theory
The BCS Hamiltonian is

H =
∑
kkkσ

~2k2

2m
c†kkkσckkkσ +

∑
kkk,k ′k ′k ′

Ṽeff(k ′k ′k ′ − kkk)c†k ′k ′k ′↑c
†
−k ′k ′k ′↓c−kkk↓ckkk↑

Since the electron number is not conserved, the ground state is found
by minimizing 〈ΨBCS|H|ΨBCS〉 − µ〈ΨBCS|N|ΨBCS〉, where the
Lagrange multiplier µ is the chemical potential.

The solution is

u(kkk) =
1√
2

√
1 +

ζ(kkk)

E(kkk)
, v(kkk) =

1√
2

√
1− ζ(kkk)

E(kkk)

ζ(kkk) =
~2k2

2m
− µ , E(kkk) =

√
ζ(kkk2) + ∆(kkk)2

∆(kkk) = −
∑
k ′k ′k ′

Ṽeff(k ′k ′k ′ − kkk)
∆(k ′k ′k ′)
2E(k ′k ′k ′)

Remark: µ is determined by the condition N = 2
∑

kkk

|v(kkk)|2.
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BCS theory
In the absence of pairing Ṽeff(k ′k ′k ′ − kkk) = 0, we find

∆(kkk) = 0 , E(kkk) = |ζ(kkk)|

u(kkk) =

{
1 if k > kF ,
0 otherwise v(kkk) =

{
0 if k > kF ,
1 otherwise

Using the effective pairing interaction assuming µ ≈ εF and
~ωD � εF (weak coupling approximation)

Ṽeff(k ′k ′k ′−kkk) =

 −
V0

Ω
if
∣∣∣∣~2k2

2m
− εF

∣∣∣∣ < ~ωD and
∣∣∣∣~2k ′ 2

2m
− εF

∣∣∣∣ < ~ωD ,

0 otherwise

∆(kkk) = ∆0 ≈ 2~ωD exp
(
− 1
N (0)V0

)

Condensation energy FN − FS = −1
2
N (0)∆2
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BCS theory
At finite temperature, the BCS gap equation becomes

∆(kkk) = −
∑
k ′k ′k ′

Ṽeff(k ′k ′k ′ − kkk)
∆(k ′k ′k ′)
2E(k ′k ′k ′)

tanh
[

E(k ′k ′k ′)
2kBT

]
.

Using the effective pairing interaction of Cooper, we find (γ ≈ 0.577 is
the Euler-Mascheroni constant)

kBTc =
2 exp(γ)

π
~ωD exp

(
− 1
N (0)V0

)

The BCS theory predicts the universal relation
∆0

Tc
=

π

exp(γ)
.

Moreover,
∆(T )

∆0
depends solely on

T
Tc

, and is approximately given by

∆(T ) ≈ ∆0

√
1−

(
T
Tc

)δ
with δ ≈ 3.23.

S. Goriely, Nucl. Phys. A 605, 28 (1996).
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BCS theory
The BCS theory predicts a discontinuity in the heat capacity at Tc :

CS − CN

CN
≈ 3

2
δ exp(−2γ) ≈ 1.5.

The behavior of the heat capacity (per unit volume) at any
temperature T is well reproduced by the following formulas:

C(T ) ≈ 3
2

n R00(u)

[
1− exp

(
− T

Tcl

)]
R00(u) =

[
a0 +

√
(a1)2 + (a2u)2

]α
exp

(
b0 −

√
b2

1 + u2

)
where u =

√
1− τ

(
c0 −

c1√
τ

+
c2

τ

)
, τ =

T
Tc

, and Tcl =
3εF

kB π2 .

The values of the parameters can be found in
Pastore,Chamel,Margueron,MNRAS 448, 1887 (2015)
Levenfish&Yakovlev, Astron. Rep., 38, 247 (1994)

superfluid
T � Tc

C ∝ exp(−c2Tc/T )

degenerate
T > Tc and T � TF

C ∝ T

classical
T � TF

C ∝ (3/2)n



Theory of inhomogeneous superconductors
So far, the electron gas was assumed to be uniform. Accounting for
inhomogeneities (e.g. impurities, defects) using the same effective
pairing interaction Veff(r1r1r1, r2r2r2) = −V0δ(r1r1r1 − r2r2r2) leads to the
Bogoliubov-de Gennes equations:(

h0(rrr) + U(rrr) ∆(rrr)
∆(rrr) −h0(rrr)− U(rrr)

)(
ϕ1k (rrr)
ϕ2k (rrr)

)
= Ek

(
ϕ1k (rrr)
ϕ2k (rrr)

)
h0(rrr) ≡ − ~2

2m

(
∇∇∇− iq

~c
AAA
)2

− µ is the kinetic operator

U(rrr) = −V0n(rrr) is the mean-field potential

∆(rrr) = −1
2

V0ñ(rrr) is the pair potential

n(rrr) =
∑

k

{
fk |ϕ1k (rrr)|2 + (1− fk )|ϕ2k (rrr)|2

}
is the “normal” density

ñ(rrr) =
∑

k

(2fk − 1)ϕ2k (rrr)ϕ1k (rrr)∗ is the “abnormal” density

fk =
1

1 + exp(Ek/kBT )
is the Fermi occupation factor



Theory of inhomogeneous superconductors
In the limiting case of a uniform superconductor with AAA = 0, the
quasiparticle wavefunction can be written as

ϕ1k (rrr) =
1√
Ω

u(kkk)eikkk·rrr , ϕ2k (rrr) =
1√
Ω

v(kkk)eikkk·rrr

The Bogoliubov-de Gennes equation thus reduces to(
ζ(kkk) ∆

∆ −ζ(kkk)

)(
u(kkk)
v(kkk)

)
= E(kkk)

(
u(kkk)
v(kkk)

)
with ζ(kkk) ≡ ~2k2

2m
− µ− V0n ≈ ~2k2

2m
− εF .

The solutions are u(kkk) =
1√
2

√
1 +

ζ(kkk)

E(kkk)
, v(kkk) =

1√
2

√
1− ζ(kkk)

E(kkk)

with E(kkk) =
√
ζ(kkk)2 + ∆2, and

∆ = −V0

Ω

∑
kkk

(2fk − 1)u(kkk)v(kkk) =
V0

Ω

∑
kkk

∆

2E(kkk)
tanh

[
E(kkk)

2kBT

]
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Beyond BCS
The BCS theory has been very successful in describing so called
conventional superconductors with low Tc (weak coupling).

Kittel, Introduction to Solid State Physics

The BCS mean-field approach was later reformulated and extended
using quantum field theory methods.



Fermionic condensates: from BEC to BCS

On December 16, 2003, the first
dilute fermionic condensate was
produced by Deborah Jin at JILA
with 500 000 potassium 40K atoms
cooled to 50 nK.

By varying the pairing interaction with a magnetic field, it is possible
to study the crossover from a BEC to a BCS state.
Leggett&Zhang in “The BCS-BEC Crossover and the Unitary Fermi Gas”, Lecture
Notes in Physics 836 (Springer, 2012), pp. 33-47

Quantized vortices in: (a) a BEC of bosonic sodium atoms, a
fermionic condensate of 6Li atoms in the BEC (b) and BCS (c) states.
Zwierlein et al, Nature 435, 1047 (2005)



Summary

Superfluidity and superconductivity are intimately related
macroscopic quantum phenomena:

absence of electric resistance/viscosity,
persistent current/flow in rings,
Meissner-Ochsenfeld effect (BBB = 0)/Hess-Fairbank effect (LLL = 0),
critical current/velocity,
quantized magnetic flux tubes/vortex lines.

The dynamics of superfluids and superconductors (charged
superfluids) can be explained by a two-fluid model.

Superfluidity and superconductivity are associated with
Bose-Einstein condensation. In the case of fermions, the
condensation proceeds through the formation of Cooper pairs.


