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Neutron stars

quark-hybrid traditional neutron star

star

hyperon

star neutron star with

pion condensate

Fe
color-superconducting 6 3
strange quark matter 10~ g/cm
(u,d,s quarks) 11 3
10~ glem
CFL
2SC L+ 101 gem 3
CFL-K
2SC+s 0
CFL=K 0 < Hydrogen/He
CFL-Tt atmosphere

strange star
nucleon star

R ~ 10 km

Neutron star crust ~ 1% mass, 10% radius
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Why studying neutron star crust ?

Crust=interface between outer layers (observations) and core

= Important role in the dynamics of the star :

% electrical resistivity = evolution of magnetic field (pulsar
emission, magnetars)

% thermal conductivity = X ray emission, cooling

% elastic properties = pulsar glitches, oscillation modes,
gravitational waves

% equation of state = binary merger
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Neutron star crust as a probe for exotic nuclel

Exotic phases inaccessible on Earth !
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Neutron star crust as a probe for exotic nuclel

Exotic phases inaccessible on Earth !

% Very neutron rich nuclei
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Neutron star crust as a probe for exotic nuclel

Exotic phases inaccessible on Earth !

% Very neutron rich nuclei
% Strongly deformed nuclei (“pasta” phases)
% Nucleli immersed in a neutron superfluid

= nuclear astrophysical laboratory!
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Structure of the crust

Envelop SRe

Outer crust
p~4.10" g/cm’
neutron drip

Inner crust

p~2/3 P,

IATEX — p.6



Electron properties

At densities p > 10° g.cm™?

IATEX — p.7



Electron properties

At densities p > 10° g.cm™?

* A < L = relativistic

IATEX — p.7



Electron properties

At densities p > 10° g.cm™?

* A < L = relativistic

Atn,

1/3
*ang ~%~%<<1,a:< 3 ) = uniform

(in ordinary metals I' = 0.543r; ~ 1)
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Electron properties

At densities p > 10° g.cm™?
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(in ordinary metals I' = 0.543r; ~ 1)
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Ground state of matter below neutron drip

% Cold catalyzed matter hypothesis, Harrison et al. (1965)
% Perfect crystal with a single nuclear species at lattice sites

=- minimising the energy per nucleon ¢/n,,

e=nyE{A, Z} +e.+¢

E{A, Z} energy of a nucleus (mass of known nuclei or
semi-empirical mass formula)

e. energy density of the electron gas

e, lattice energy density
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Ground state of matter below neutron drip

% Cold catalyzed matter hypothesis, Harrison et al. (1965)
% Perfect crystal with a single nuclear species at lattice sites

=- minimising the energy per nucleon ¢/n,,

e=nyE{A, Z} +e.+¢

uniform relativistic electron gas
co = M (x(\/l + 22(1 +222) — log{z + V1 + x2})

where z = hk.r/mec and kep = (372n.)Y?
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Ground state of matter below neutron drip

% Cold catalyzed matter hypothesis, Harrison et al. (1965)
% Perfect crystal with a single nuclear species at lattice sites

= minimising the energy per nucleon &/n;,

e=nyE{A, Z} +e.+¢

Wigner-Seitz
approximation

Each sphere is electrically neutral
= €, = €ee T EeN
assuming uniform electron sea

_ 9 72’ _ 5<r?>
= €L = 710 Reen ”N( 0 R”., )
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Composition of the outer crust (T=0)

The structure of the outer crust up to p ~ 10! g.cm=3 is
completely determined by the measured masses of neutron rich
nuclel, Haensel & Pichon Astron. & Astrophys. 283 (1994) 313.

Element Z N ZJ/A Prmax TR Ap/p
(gem™) MeV) (%)
6Fe 26 30 04643  7.96 10° 095 29
82N 28 34 04516 2.71108 261 3.1
*Ni 28 36 04375 1.3010° 431 3.1
%Nj 28 38 04242 1.4810° 445 2.0
80Kr 36 50 0418  3.1210° 566 33
*Se 34 50 04048 1.1010" 849 36
22Ge 32 50 03902 2.8010" 11.44 39
807Zn 30 50 03750 5.4410° 14.08 43
Ni 28 50 03590 9.64 10" 16.78 4.0
126Ru 44 82 03492 1.29 10" 18.34 3.0
124Mo 42 82 03387 1.8810" 20.56 3.2
- 40 82 03279  2.67 10" 2286 34
120, 38 82 03167 3.79 10" 2538 3.6
Ve 36 82 0.3051 (4.3310") (26.19)
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The structure of the outer crust up to p ~ 10! g.cm=3 is
completely determined by the measured masses of neutron rich
nuclel, Haensel & Pichon Astron. & Astrophys. 283 (1994) 313.

Element Z N ZJ/A Pmax TR Ap/p
(gem™) (MeV) (%)
®Fe 26 30 04643  7.96 10° 095 29
82N 28 34 04516 2.71108 261 3.1
*Ni 28 36 04375 1.3010° 431 3.
%N 28 38 04242 1.4810° 445 20
80Kr 36 50 0418  3.1210° 566 33
*Se 34 50 04048 1.1010" 849 36
22Ge 32 50 03902 2.8010" 1144 39
807Zn 30 50 03750 5.4410° 14.08 43
Ni 28 50 03590 9.64 10" 16.78 4.0
126Ru 44 82 03492 1.29 10" 18.34 3.0
1Mo 42 82 03387 1.8810" 20.56 3.2
e 40 82 03279 2.67 10" 2286 34
120, 38 82 03167 3.79 10" 2538 3.6
Ve 36 82 0.3051 (4.3310") (26.19)

= very low proton fraction due to inverse $ decay
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Composition of the outer crust (T=0)

The structure of the outer crust up to p ~ 10! g.cm=3 is
completely determined by the measured masses of neutron rich
nuclel, Haensel & Pichon Astron. & Astrophys. 283 (1994) 313.

Element Z N ZJ/A Pmax TR Ap/p
(gem™) (MeV) (%)
*Fe 26 30 04643  7.96 10° 095 29
82N 28 34 04516 2.71108 261 3.1
*Ni 28 36 04375 1.3010° 431 3.
%N 28 38 04242 1.4810° 445 20
80Kr 36 50 0418  3.1210° 566 33
*Se 34 50 04048 1.1010" 849 36
22Ge 32 50 03902 2.8010" 1144 39
807Zn 30 50 03750 5.4410° 14.08 43
"Ni 28 50 03590 9.64 10" 16.78 4.0
126Ru 44 82 03492 1.29 10" 18.34 3.0
1Mo 42 82 03387 1.8810" 20.56 3.2
e 40 82 03279 2.67 10" 2286 34
120, 38 82 03167 3.79 10" 2538 3.6
Ve 36 82 03051 (4.3310') (26.19)

= very low proton fraction due to inverse $ decay
= strong shell effects with magic numbers 28, 50, 82
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Calculations beyond neutron drip

IATEX — p.10



Calculations beyond neutron drip

% Beyond p ~ 4 x 10" g.cm™3, nuclei are immersed in a
neutron sea

IATEX — p.10



Calculations beyond neutron drip

% Beyond p ~ 4 x 10" g.cm™3, nuclei are immersed in a
neutron sea

= F{A, Z} must be extrapolated

IATEX — p.10



Calculations beyond neutron drip

% Beyond p ~ 4 x 10" g.cm™3, nuclei are immersed in a
neutron sea

= F{A, Z} must be extrapolated

% Due to iInhomogeneities, calculations from bare
nucleon-nucleon interactions are not feasible

IATEX — p.10



Calculations beyond neutron drip

% Beyond p ~ 4 x 10" g.cm™3, nuclei are immersed in a
neutron sea

= F{A, Z} must be extrapolated

% Due to iInhomogeneities, calculations from bare
nucleon-nucleon interactions are not feasible

= effective phenomenological interactions/models

IATEX — p.10



Calculations beyond neutron drip

% Beyond p ~ 4 x 10" g.cm™3, nuclei are immersed in a
neutron sea

= F{A, Z} must be extrapolated

% Due to iInhomogeneities, calculations from bare
nucleon-nucleon interactions are not feasible

= effective phenomenological interactions/models

From a given “microscopic” Hamiltonian :

IATEX — p.10



Calculations beyond neutron drip

% Beyond p ~ 4 x 10" g.cm™3, nuclei are immersed in a
neutron sea

= F{A, Z} must be extrapolated

% Due to iInhomogeneities, calculations from bare
nucleon-nucleon interactions are not feasible

= effective phenomenological interactions/models
From a given “microscopic” Hamiltonian :

Y Semiclassical calculations

IATEX — p.10



Calculations beyond neutron drip

% Beyond p ~ 4 x 10" g.cm™3, nuclei are immersed in a
neutron sea

= F{A, Z} must be extrapolated

% Due to iInhomogeneities, calculations from bare
nucleon-nucleon interactions are not feasible

= effective phenomenological interactions/models
From a given “microscopic” Hamiltonian :

Y Semiclassical calculations
% Quantum calculations
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Hierarchy of approximations
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Hierarchy of approximations

% Compressible liquid drop model
* nuclei have sharp cut surface
* nuclear matter inside and outside nuclei is homogeneous

* provides useful insight by separating contributions to the
energy density
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Hierarchy of approximations

% Compressible liquid drop model
* nuclei have sharp cut surface
* nuclear matter inside and outside nuclei is homogeneous

* provides useful insight by separating contributions to the
energy density

% (Extended) Thomas-Fermi

* smooth density profiles (nuclei have smooth surface)

* nuclear matter is locally homogeneous

* consistent treatment of nucleons inside and outside nuclei
% Hartree-Fock (Negele& Vautherin)

* Independent particles = shell effects

% Hartree-Fock-Bogoliubov
* Independent quasiparticles = pairing effects
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(+W-S approximation)
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Ground state of matter above neutron drip

Compressible liquid drop model Mo -
(+W-S approximation)
&€ — €N,bulk + € N, surf +E0 + €e n

EN,bulk — UW{nn,ia np,z’} + (1 — U)W{nn,oa 0}
U = (RP/Rcell)3
W{nn,ny,} energy density of homogeneous nuclear matter

= consistent description of nuclear matter inside and outside
nuclel
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Ground state of matter above neutron drip

Compressible liquid drop model Mg
(+W-S approximation)
&€ — €N,bulk + € N, surf +E0 + €e n

EN,bulk — UW{nn,ia np,i} + (1 — U)W{nn,oa O}

U = (Rp/Rcell)3

W{nn,ny,} energy density of homogeneous nuclear matter
€N, surf = (AU + Ns n,s)/vcell
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(+W-S approximation)
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Ground state of matter above neutron drip

Compressible liquid drop model Mo -
(+W-S approximation)
&€ — €N,bulk + € N, surf +E0 + €e n

EN,bulk — UW{nn,ia np,z'} + (1 — U)W{nn,oa 0}

U = (RP/Rcell)3

W{nn,ny,} energy density of homogeneous nuclear matter
€N, surf = (AU + Ns n,s)/vcell

EC =EN,C tEL = %(np,ieyuRpQ (1 — %ul/g + %u)

Effects of the ambient neutron gas
% reduction of the surface tension
% compression of the nuclel
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Nuclear surface properties

Consider a 2 phase nucleon system in thermodynamical
equilibrium at T' = 0 separated by a plane interface at z = z,t.
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Nuclear surface properties

Consider a 2 phase nucleon system in thermodynamical
equilibrium at T' = 0 separated by a plane interface at z = z,t.

Surface tension defined by
05 = [T ({2} — epuk {21z — i [ ({2} -
M e (21)d2 = 11 [735 (np {2} = 1 2, {2})d2

5bulk,zref{z} — &4 H{Zref — Z} + €0 H{Z — Zref}

Mgz l?} = Ngi 0 2ot — 2} + Ngo0{2 — 2ref }
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Surface tension

Douchin et al., Nucl. Phys. A 665 (2000) 419-446.

e calculated from Skyrme energy density functional within ETF

approximation
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Virial theorem

Baym et al., Nucl. Phys. A175 (1971) 225.
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% neglecting curvature correction to the surface energy
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Virial theorem

Baym et al., Nucl. Phys. A175 (1971) 225.

% nheglecting curvature correction to the surface energy
% nheglecting finite size effects to the Coulomb energy

= At equilibrium ‘5N,surf = 2e¢ I

= The lattice energy plays a crucial role for determining the
composition and the shape of nuclei!

er, ~ 15% of the total Coulomb energy at p ~ 10! g.cm—3
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Equilibrium conditions
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Equilibrium conditions

% Mechanical equilibrium = generalised Laplace’s formula

bulk bulk __ 20, 4w 2. 2 2(1 _
P — P = 3= — fetng i Iy (1 —u)
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Equilibrium conditions

% Mechanical equilibrium = generalised Laplace’s formula

bulk bulk __ 20, Aw 2.2 .
P — P = 3= — fetng i Iy 2(1 — u)

% Chemical equilibrium

bulk __ , bulk _  bulk

n,? p,o n,s

bulk bulk 87r 2 2 3..1/3 1
ni — Hpg — He 5enszp (1—§u/ +§u>

IATEX — p.16



Structure of the inner crust within the CLDM

Douchin & Haensel, Phys. Lett. B 484 (2000) 107.
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Structure of the inner crust within the CLDM

Douchin & Haensel, Phys. Lett. B 484 (2000) 107.
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= Z nearly constant throughout the crust
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Pasta phases

Ravenhall et al. PRL50 (1983), 2066.
At high densities, surface energy can be reduced by deforming
and joining nuclei !

IATEX — p.18



Pasta phases

Ravenhall et al. PRL50 (1983), 2066.
At high densities, surface energy can be reduced by deforming
and joining nuclei !

Bohr-Wheeler fission condition for isola- e > 2N
ted nuclei (valid for the crust to order u) : L surf I

IATEX — p.18



Pasta phases

Ravenhall et al. PRL50 (1983), 2066.
At high densities, surface energy can be reduced by deforming
and joining nuclei !

Bohr-Wheeler fission condition for isola- e > 2N
ted nuclei (valid for the crust to order u) : L surf I

virial theorem ey gurf ~ 2en.c (1 — %ul/:%)

u > 1/8 = non spherical nuclei in a neutron sea

IATEX — p.18



Pasta phases

Ravenhall et al. PRL50 (1983), 2066.
At high densities, surface energy can be reduced by deforming
and joining nuclei !

Bohr-Wheeler fission condition for isola- e > 2N
ted nuclei (valid for the crust to order u) : L surf I

virial theorem ey gurf ~ 2en.c (1 — %ul/:%)

u > 1/8 = non spherical nuclei in a neutron sea
u > 1/2 = neutron bubbles in nuclear matter, BBP (1971)

IATEX — p.18



Pasta phases

Ravenhall et al. PRL50 (1983), 2066.
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and joining nuclei !

Bohr-Wheeler fission condition for isola- e > 2N
ted nuclei (valid for the crust to order u) : L surf I

virial theorem ey gurf ~ 2en.c (1 — %ul/:%)

u > 1/8 = non spherical nuclei in a neutron sea
u > 1/2 = neutron bubbles in nuclear matter, BBP (1971)

Pasta phases have important conseguences for

% elastic properties (liquid crystals)
Pethick et al., Phys. Lett. B 427 (1998) 7.
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Pasta phases

Ravenhall et al. PRL50 (1983), 2066.
At high densities, surface energy can be reduced by deforming
and joining nuclei !

Bohr-Wheeler fission condition for isola- e > 2N
ted nuclei (valid for the crust to order u) : L surf I

virial theorem ey gurf ~ 2en.c (1 — %ul/:%)

u > 1/8 = non spherical nuclei in a neutron sea
u > 1/2 = neutron bubbles in nuclear matter, BBP (1971)

Pasta phases have important conseguences for

% elastic properties (liquid crystals)
Pethick et al., Phys. Lett. B 427 (1998) 7.

% cooling (possiblity of direct URCA processes)
Gusakov et al., Astron. & Astrophys. 421 (2004), 1143.
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From liquid drop models to quantum calculations
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From liquid drop models to quantum calculations

Boundary conditions for quantum calculations ?
ldea : instead of considering the whole lattice, focus on one
nucleus

= “Wigner-Seitz approximation”

one nucleus in a sphere + arbitrary
boundary conditions
= 1D problem
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Negele & Vautherin paper

Negele & Vautherin, Nucl. Phys. A207 (1973)
298.
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298.

Density matrix expansion (no pairing correlations)
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Negele & Vautherin paper

Negele & Vautherin, Nucl. Phys. A207 (1973) g n
208. i

Density matrix expansion (no pairing correlations)
= Skyrme like energy density functional e{n,{r}, 7,{r}},
q=mn,p
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Negele & Vautherin paper

Negele & Vautherin, Nucl. Phys. A207 (1973)
298.

Density matrix expansion (no pairing correlations)
= Skyrme like energy density functional e{n,{r}, 7,{r}},
q=mn,p

ocCC

ng{ry =) lei{r}’

OCC

o{r} = [V {r}’
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Negele & Vautherin paper

Negele & Vautherin, Nucl. Phys. A207 (1973)
298.

Density matrix expansion (no pairing correlations)

= Skyrme like energy density functional e{n,{r}, 7, {r}},
q—mn,p

—V - - rt—i rt-Vxo— (@) £y =
:>< V ng{r}V—FUq{} Wq{r} -V 5)@ {r} =0
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Negele & Vautherin paper

Negele & Vautherin, Nucl. Phys. A207 (1973)
298.

Density matrix expansion (no pairing correlations)

= Skyrme like energy density functional e{n,{r}, 7, {r}},
q—mn,p

h2
— . — 1 3 — (q) :
= < V 2m?;{r}v—kUq{r} iWg{r} -Vxo S)gp {r} =0
Boundary conditions :

Y wave functions with even [ vanish and the radial derivative of
those with odd [ vanish on the W-S sphere

% averaging of the densities at the cell edge.
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Equilibrium structure of the inner crust (T=0)

Spin-orbit coupling terms for neutrons are neglected. Electrons
are treated as a uniform relativistic gas.
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Equilibrium structure of the inner crust (T=0)

Spin-orbit coupling terms for neutrons are neglected. Electrons
are treated as a uniform relativistic gas.
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l— / gt I\h\ 1!c- d:ﬂ ﬁlﬂ 3 BIG 100 éﬁ
o 320 n =878 % 100
7 b '
/hA_\'\ -m“r /ﬁm\
B Y
[ //\I/\\\ 1 ! L /V\\I
0 0 40 &0 80 100
GI: 1100
I ﬂ er‘I m “h'; 577 x 1036
A 0 20 40 &0 ao
IR
W oafF 1800
. fM\ S m 5 s sl
o

1
20 40 &0

1
E \ / \ a, = 475 x 10¥
L /“’""K | m
20 a0
ag2
ol Ge
E_M——-—— ng=7.89 x 0¥
_.,--;"H_'—'l\_\_\"""-- 1—""'"-'-'_'_-_"_\-\"""-—— | .
E o 20 40 rl’F]

IATEX — p.21



Equilibrium structure of the inner crust (T=0)

Spin-orbit coupling terms for neutrons are neglected. Electrons
are treated as a uniform relativistic gas.

I

o N Z i o A & (EJA)—my (EgslA)—my,
(cm™?) : (MeV) (MeV) (fm—3) (MeV) (MeV)
2.79 % 1033 140 40 0.2  —268 4 X105 ~ 0.53  —1.425 0.436
4.00 x10%3 160 40 0.3 —29.4 9.7 x10°%  0.53 —0.962 0.543
6:00:¢10%2 210 40 0.6 —29.5 26 ®10°% Q.53 —0.462 0.692
8.79 X 10°3 280 40 1.0 —28.5 - 48 x10-*  0.53 —0.050 0.865
1.59 % 10%¢ 460 40 1.4 —294 12 x10°%  0.52 0.541 1.214
3.73 X 1036 900 50 2.6 —33.6 3.0 x10°*  0.46 1.465 1.926
577%10% . 1050 50 3.3  —345 47 x107% 045 1.996 2.408
891%10% 1300 S0 42 —358 7.8 x10°3  0.44 2.610 2.981
204%10%7 1750 500 6.5  —43.6 1.84x10°2  0.35 4.097 4.422
475%10%7 1460 40 109  —54.0 436x10-2  0.28 6.428 6.660
7,89 % 1037 950 32 150 —68.3  737x10-*  0.16 8.611 8.657
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Equilibrium structure of the inner crust (T=0)

Spin-orbit coupling terms for neutrons are neglected. Electrons
are treated as a uniform relativistic gas.

m————

o N Z i o A & (EJA)—my (EgslA)—my,

(cm™?) : (MeV) (MeV) (fm~3) (MeV) (MeV)
2.79 % 1033 140 40 0.2  —268 4 X105 ~ 0.53  —1.425 0.436
4.00 x10%3 160 40 0.3 —29.4 9.7 x10°%  0.53 —0.962 0.543
6.00 X 103% 210 40 0.6  —29.5 2.6 x10°* 053  —0.462 0.692
8.79 X 10°3 280 40 1.0 —28.5 - 48 x10-*  0.53 —0.050 0.865
1.59 % 10%¢ 460 40 1.4 —294 12 x10°%  0.52 0.541 1.214
3.73 X 1036 900 50 2.6 —33.6 3.0 x10°*  0.46 1.465 1.926
577%10% . 1050 50 3.3  —345 47 x107% 045 1.996 2.408
891%10% 1300 S0 42 —358 7.8 x10°3  0.44 2.610 2.981
204%10%7 1750 500 6.5  —43.6 1.84x10°2  0.35 4.097 4.422
475%10%7 1460 40 109  —54.0 436x10-2  0.28 6.428 6.660
7,89 % 1037 950 32 150 —68.3  737x10-*  0.16 8.611 8.657

:} strong proton shell effects at Z=40 (Zr) and Z=50 (Sn)
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Equilibrium structure of the inner crust (T=0)

Spin-orbit coupling terms for neutrons are neglected. Electrons
are treated as a uniform relativistic gas.

m————

o N Z L o P E (EJA)—my (EgslA)—my,

(cm™?) : (MeV) (MeV) (fm~3) (MeV) (MeV)
2.79 % 1033 140 40 0.2  —268 4 X105 ~ 0.53  —1.425 0.436
4.00 x10%3 160 40 0.3 —29.4 9.7 x10°%  0.53 —0.962 0.543
6.00 X 103% 210 40 0.6  —29.5 2.6 x10°* 053  —0.462 0.692
8.79 X 10°3 280 40 1.0 —28.5 - 48 x10-*  0.53 —0.050 0.865
1.59 % 10%¢ 460 40 1.4 —294 12 x10°%  0.52 0.541 1.214
3.73 X 1036 900 50 2.6 —33.6 3.0 x1073  0.46 1.465 1.926
577%10% . 1050 50 3.3  —345 47 x107% 045 1.996 2.408
891%10% 1300 S0 42 —358 7.8 x10°3  0.44 2.610 2.981
204%10%7 1750 500 6.5  —43.6 1.84x10°2  0.35 4.097 4.422
475%10%7 1460 40 109  —54.0 436x10-2  0.28 6.428 6.660
7,89 % 1037 950 32 150 —68.3  737x10-*  0.16 8.611 8.657

:} strong proton shell effects at Z=40 (Zr) and Z=50 (Sn)
= unlike lattice spacing, the nuclear size is almost constant
throughout the crust
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Superfluidity

% Theory

IATEX — p.22



Superfluidity
% Theory

* Superfluidity predicted by Migdal in 1959 before the
discovery of pulsars
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Superfluidity

% Theory

* Superfluidity predicted by Migdal in 1959 before the
discovery of pulsars

x Cooper pairing in the 1Sy channel like in conventional
superconductors

x BCS regime regime ¢ > n,~'/3 (no transition to BEC)
% Observations

* Evidence of superfluidity from long relaxation times after
pulsar glitches

* Superfluidity involved in some mechanism of glitches
(vortex pinning)

* Superfluidity in the crust affects the cooling time
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Superfluidity in low density pure neutron matter

Baldo et al.,

[MeV]

A

u. -

NPA 749 (2005) 42c.

3.5_III|I||

25F

BCS

Chen et al., NF’A 451 009 (1986)
Ainsworth, et al., PLB 222 173 (1989)
Chen et al NPA 555, 59 {1993)
Wambach et al., NPA 555, 428 (1993)
Schulze etal., PLB 375, 1 (1996)
Schwenk etal., NPA 713, 191" (2003)
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Superfluidity in low density pure neutron matter

Baldo et al., NPA 749 (2005) 42c.

R L B B B I L B DL L B

i BCS .

3 — Chenetal, NF’A451 w009 (1986) _'

— = Ainsworth, et al., PLB 222 173 (1989) '

2_5:_ ------- Chen etal NPA 555, 59 {1993) _

[ GheRee Wambach et al., NPA 555, ‘128(1993) i

= 21_ ------- Schulze etal., PLB 375, 1(1996} E
% i ———e Schwenk etal., NPA 713, 191" (2003)

ol 1.5 :

= Pairing gap A ~ MeV
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Superfluidity in low density pure neutron matter

Baldo et al., NPA 749 (2005) 42c.

R L B B B I L B DL L B

i BCS .

3 — Chenetal, NF’A451 w009 (1986) _'

B — = Ainsworth, et al., PLB 222 173 (1989) '

2_5:_ ------- Chen etal NPA 555, 59 {1993) h
[ GheRee Wambach et al., NPA 555, ‘128(1993)

= 21_ ------- Schulze etal., PLB 375, 1(1996} E
% i ———e Schwenk etal., NPA 713, 191" (2003)

0O 02 04 06 08 1 12 14 16 18
4
Ke [fm ]

= Pairing gap A ~ MeV

=> critical temperature 7., ~ A/kg and density range of
superfluidity depend on medium effects

IATEX — p.23



Superfluidity in neutron star crust matter

Sandulescu et al., Phys. Rev. C 69 (2004), 045802.
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Sandulescu et al., Phys. Rev. C 69 (2004), 045802.

% Mean field approximation : independent pairs of correlated
nucleons
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Superfluidity in neutron star crust matter

Sandulescu et al., Phys. Rev. C 69 (2004), 045802.

% Mean field approximation : independent pairs of correlated
nucleons

= Hartree-Fock Bogoliubov equations

<H{r} - A{r} ) (u{r}> _ 5 (u{r})
Ax{r} —H*{r}+ vir}) \o{r}

with Skyrme (SLy4) nucleon-nucleon interactions and with
two sets of pairing force (weak/strong)

Vir—1') =1, (1 ~ n(”{r})”) 5{r — ')

1o
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% Mean field approximation : independent pairs of correlated
nucleons

= Hartree-Fock Bogoliubov equations

<H{r} - A{r} ) (u{r}> _ 5 (u{r})
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with Skyrme (SLy4) nucleon-nucleon interactions and with
two sets of pairing force (weak/strong)

Vir—1') =1, (1 ~ n(”{r})”) 5{r — ')

1o

* + W-S approximation with N&V boundary conditions
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Superfluidity in neutron star crust matter

Sandulescu et al., Phys. Rev. C 69 (2004), 045802.

% Mean field approximation : independent pairs of correlated
nucleons

= Hartree-Fock Bogoliubov equations

<H{r} - A{r} ) (u{r}> _ 5 (u{r})
Ax{r} —H*{r}+ vir}) \o{r}

with Skyrme (SLy4) nucleon-nucleon interactions and with
two sets of pairing force (weak/strong)

Vir—1') =1, (1 ~ n(”{r})”) 5{r — ')

1o

* + W-S approximation with N&V boundary conditions
* R.aq, N and Z taken from N&V
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pairing field [MeV]

Pairing field
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Pairing field

e S e SR SRS 0 e
S S———— 5, B e \x_““'\ // i~ =
-1 \ | eemTmemememmess -1 ,
7~ \
5 : .
2 E — f
o o
T -2 2 -2
o) >
= £
5 s :
—— 1500 Zr (1)
—— 1800 Sn (1 — ]
= ——— @50 sn ((1)) 3 === 500 Zr (1)
—-—-- 1800 Sn (2) —s=ze: 1500.7x (2] T ey
_____ 950 Sn (2) mmmme {500 2 (2)
-4 -4 |
0 4 8 12 16 0 4 8 12 16 20
r [fm] r [fm]

= The pairing field varies smoothly between the nuclei and the

neutron gas : proximity effect
Barranco et al., Phys. Rev. C 58 (1998), 1257.
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Pairing field

e S e SR SRS 0 e
i 5, T R \x_““'\ // i =R =0
= TP -1 S y
7~ \
5 : .
=) = — /
o o
e 7 2 -2
& 8 —— 1500 Zr (1)
-3 — 1800 Sn (1) cose: 3| 500 zr (1)
———- 950 Sn (1) .
—-—-- 1800 Sn (2) —s=ze: 1500.7x (2] ————
_____ 950 Sn (2) mmmme {500 2 (2)
=3 -4 |
0 4 8 12 16 0 4 8 12 16 20
r [fm] r [fm]

= The pairing field varies smoothly between the nuclei and the
neutron gas : proximity effect

Barranco et al., Phys. Rev. C 58 (1998), 1257.

=- At high density, the pairing field is suppressed inside nuclei
while at low density it is enhanced at the surface
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Pairing field

e S e SR SRS 0 e
i 5, T e \x_““'\ // i =R =0
-1 % R G = 3 Y
7~ \
5 : .
=) = — /
o o
T -2 g -2
& 8 —— 1500 Zr (1)
-3 — 1800 Sn (1) cose: 3| 500 zr (1)
———- 950 Sn (1) .
—-—-- 1800 Sn (2) —s=ze: 1500.7x (2] ————
_____ 950 Sn (2) mmmme {500 2 (2)
=3 -4 |
0 4 8 12 16 0 4 8 12 16 20
r [fm] r [fm]

= The pairing field varies smoothly between the nuclei and the
neutron gas : proximity effect

Barranco et al., Phys. Rev. C 58 (1998), 1257.

=- At high density, the pairing field is suppressed inside nuclei
while at low density it is enhanced at the surface

= The pairing field is very sensitive to the pairing force
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Superfluidity and cooling

Pizzochero et al., Astrophys.. J. 569 (2002), 381.

HFB calculations with a fixed Woods-Saxon mean field
parametrised from the results of N & V.
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Superfluidity and cooling

Pizzochero et al., Astrophys.. J. 569 (2002), 381.

HFB calculations with a fixed Woods-Saxon mean field
parametrised from the results of N & V.
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Superfluidity and cooling

Pizzochero et al., Astrophys.. J. 569 (2002), 381.

HFB calculations with a fixed Woods-Saxon mean field
parametrised from the results of N & V.

|||||||| 5 s
8 * . b
T=80 keV T=100 keV
i —{— Gogny 5 g —{— Gogny
B oo Argonne | A e Argonne
e 3
G &
= a4 =
= 3
= 1 £
o 2] o
1 B # H-——H 1
ol 0

| R T F I 1
2.5 -2.0 -1.5 -1.0

3 2 -1, -1.0
Loglpip,) Logip/p)
Fic. 122 Fic. 125

= the specific heat is significantly increased at low density due
to the suppression of the pairing field inside nuclei
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Superfluidity and cooling

Pizzochero et al., Astrophys.. J. 569 (2002), 381.

HFB calculations with a fixed Woods-Saxon mean field
parametrised from the results of N & V.
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Superfluidity and cooling

Pizzochero et al., Astrophys.. J. 569 (2002), 381.
HFB calculations with a fixed Woods-Saxon mean field
parametrised from the results of N & V.

..............
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Superfluidity and cooling

Pizzochero et al., Astrophys.. J. 569 (2002), 381.
HFB calculations with a fixed Woods-Saxon mean field
parametrised from the results of N & V.

.......

||||||||||||||

..............

n.u.
"""""""

time [yr]

Log{p/p,)

= the presence of the nuclear lattice tend to increase the heat
diffusion time along the inner crust therefore the surface
temperature
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Observational constraints on the crust

Lattimer et al., Astrophys.. J. 425 (1994), 802.
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Observational constraints on the crust

Lattimer et al., Astrophys.. J. 425 (1994), 802.
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= t,, IS related to the diffusion of heat in the crust
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Observational constraints on the crust

Lattimer et al., Astrophys.. J. 425 (1994), 802.

I T | = — 102
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e
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S L +—— Direct A
8 2 -101
8w B / 2
~ L Isotherma V102
I", 4103
ty '-.
v i 4104
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100 10! 102 103 104 10° 106
Age (years)

= t,, IS related to the diffusion of heat in the crust

= Measures of ¢, from observations can constrain models of
neutron star crust
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Effects of pairing on the structure of the crust ?

Baldo et al., Nucl. Phys. A 750 (2005) 4009.
Ground state of the crust in the regions of maximal neutron

pairing (p ~ 1.9 x 103 g.cm=3)?
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Effects of pairing on the structure of the crust ?

Baldo et al., Nucl. Phys. A 750 (2005) 4009.
Ground state of the crust in the regions of maximal neutron

pairing (p ~ 1.9 x 103 g.cm=3)?

Generalised density functional theory including pairing
correlations (in BCS approximation) :

e{ngirt, velrt} =
ot ({0}, vy (e F{r} + 25 (g {r}, vg{r}} (1 = ()

* e°uster phenomenological Fayan's functional
% 8% LDA of a microscopic pure neutron matter EOS

Fir} = (1 + exp{(r — Rm)/dm}) ) , Np{Rm} = 0.1n,{0}

IATEX — p.29



Effects of pairing on the structure of the crust ?

Baldo et al., Nucl. Phys. A 750 (2005) 4009.
Ground state of the crust in the regions of maximal neutron

pairing (p ~ 1.9 x 103 g.cm=3)?

Generalised density functional theory including pairing
correlations (in BCS approximation) :
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Effects of pairing on the structure of the crust ?

Baldo et al., Nucl. Phys. A 750 (2005) 4009.
Ground state of the crust in the regions of maximal neutron

pairing (p ~ 1.9 x 103 g.cm=3)?

Generalised density functional theory including pairing
correlations (in BCS approximation) :

> (S emen) G =2 Cin)

IATEX — p.30



Effects of pairing on the structure of the crust ?

Baldo et al., Nucl. Phys. A 750 (2005) 4009.
Ground state of the crust in the regions of maximal neutron

pairing (p ~ 1.9 x 103 g.cm=3)?

Generalised density functional theory including pairing
correlations (in BCS approximation) :

= (" e ) Gen) =2 (i)
H{r} = —h*/2m, + U{r}, U, =d¢e/én,, A =bc/dv,

ng{ry =2 ol ve{ry =) ua{rjoi{r}
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Effects of pairing on the structure of the crust ?
Baldo et al., Nucl. Phys. A 750 (2005) 4009.

Ground state of the crust in the regions of maximal neutron
pairing (p ~ 1.9 x 103 g.cm=3)?

Generalised density functional theory including pairing
correlations (in BCS approximation) :

= (" e ) Gen) =2 (i)
H{r} = —h*/2m, + U{r}, U, =d¢e/én,, A =bc/dv,

ng{ry =2 ol ve{ry =) ua{rjoi{r}

+W-S approximation
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Effects of pairing on the structure of the crust ?

Equilibrium structure of the crust ?
Fayan'’s functional only

% with pairing Z = 71 and R.; = 31 fm
% without pairing Z = 40 and R.e; = 25 fm
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Effects of pairing on the structure of the crust ?

Equilibrium structure of the crust ?
Fayan'’s functional only

% with pairing Z = 71 and R.; = 31 fm

% without pairing Z = 40 and R.e; = 25 fm
Generalised functional

Y with pairing Z = 52 and R..; = 32 fm

% without pairing Z = 44 and R.e; = 29.5 fm
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Effects of pairing on the structure of the crust ?

Equilibrium structure of the crust ?
Fayan'’s functional only

% with pairing Z = 71 and R.; = 31 fm
% without pairing Z = 40 and R.e; = 25 fm

Generalised functional
Y with pairing Z = 52 and R..; = 32 fm
% without pairing Z = 44 and R.e; = 29.5 fm

= the shell effects are washed out by pairing : no magic number
= the binding energy per nucleon vs Z has a very flat minimum
. probably several nuclear species A, Z coexist at a given
density

= the composition of the nuclei is strongly affected

= but results are very sensitive to the energy functional!
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% Unphysical Friedel oscillations =- spurious shell effects
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Necessity to go beyond the W-S approximation

% Unphysical Friedel oscillations =- spurious shell effects

Example : homogenous nuclear matter in the W-S
approximation

— Basis1
- — Basismixed
-— Basis?2

o
=
I

=

Density p [fm'3]

| O - . . ‘s\_' -—
0.05—

0 . | . | . |

20 | 25
r [fm]

= spurious fluctuations in the density!
Montani et al., Phys.Rev. C69 (2004) 065801
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Necessity to go beyond the W-S approximation

% Unphysical Friedel oscillations =- spurious shell effects

Example : homogenous nuclear matter in the W-S
approximation

Gap A(r) [MeV]

= spurious fluctuations in the
pairing field!

— Hartree Fock
- — Plane waves

Gap A [MeV]
=
[6)]

Mixed basis

I | I | I |
1
0 5 10 15

r[fm]
Montani et al., Phys.Rev. C69 (2004) 065801
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Necessity to go beyond the W-S approximation

% Unphysical Friedel oscillations =- spurious shell effects

= Some averaging of the density at the cell edge is usually
Imposed to remove these spurious fluctuations
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Necessity to go beyond the W-S approximation

% Unphysical Friedel oscillations =- spurious shell effects

= Some averaging of the density at the cell edge is usually
Imposed to remove these spurious fluctuations

= equilibrium structure calculations are contaminated by
spurious shell effets'!

Y Nuclel treated as if isolated

valid approximation in the outer crust but not in the inner
layers !

= clearly inadequate to study transport properties

Beyond the W-S approximation ?

Magierski & Heenen, [Phys.Rev. C65 (2002) 045804] : HF
(SLy4) +periodic boundary conditions in a cube = why such a
choice ?

necessity for reconsidering boundary conditions more
rigorously!

IATEX — p.32



Neutron star crust as “neutronic” crystals

Neutron star crust matter=free neutrons in a periodic medium.
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Neutron star crust as “neutronic” crystals

Neutron star crust matter=free neutrons in a periodic medium.
= close analogy with condensed matter systems :

% electronic crystals
% photonic crystals
Y phononic crystals

= “neutronic” crystals

Go beyond the W-S approximation by including Bragg scattering
of dripped neutrons by crustal nuclei
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From solid state to nuclear physics

Analogy between dripped neutrons in NS crust and conduction
electrons in solids
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From solid state to nuclear physics

Analogy between dripped neutrons in NS crust and conduction
electrons in solids = Apply band theory in neutron star crust!

Main assumptions

% adiabatic approximation (Born-Oppenheimer)

600+
500 |,
400+

300+

Z,A, N‘n:,sun‘

200r

1001

(9.05 0.655 0.06 0.065 0.07 0.075 0.08

Douchin & Haensel, Phys.Lett. B485 (2000) 107
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Analogy between dripped neutrons in NS crust and conduction
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% adiabatic approximation (Born-Oppenheimer)
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Main assumptions

% adiabatic approximation (Born-Oppenheimer)
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% Ideal crystal : periodic lattice of nuclel
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From solid state to nuclear physics

Analogy between dripped neutrons in NS crust and conduction
electrons in solids = Apply band theory in neutron star crust!

Main assumptions

% adiabatic approximation (Born-Oppenheimer)
my, < my = fixed nuclei

% Ideal crystal : periodic lattice of nuclel
% Independent particle approximation
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Floguet (1883)-Bloch(1928) theorem

Single particle states in a periodic medium ?
= modulated plane wave (« fonctions périodigues de seconde
espece »)
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For each k, there exists discret energy levels = energy bands
Ealk}

IATEX — p.35



Floguet (1883)-Bloch(1928) theorem

Single particle states in a periodic medium ?
pr{r} = e T {r}  di{r + T} = ¢ {r}

For each k, there exists discret energy levels = energy bands
Ealk}

% « — rotational symmetry of nuclel

IATEX — p.35



Floguet (1883)-Bloch(1928) theorem

Single particle states in a periodic medium ?
pr{r} = e T {r}  di{r + T} = ¢ {r}

For each k, there exists discret energy levels = energy bands
Ealk}

% « — rotational symmetry of nuclel

% k — translational symmetry of crystal

IATEX — p.35



Floguet (1883)-Bloch(1928) theorem

Single particle states in a periodic medium ?
pr{r} = e T {r}  di{r + T} = ¢ {r}

For each k, there exists discret energy levels = energy bands
Ealk}

% « — rotational symmetry of nuclel

% k — translational symmetry of crystal

= local and global symmetries are both included!
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By symmetry one can consider only one nucleus in a cell .
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Symmetries

By symmetry one can consider only one nucleus in a cell .

% The shape of the cell is fixed by symmetry
Example : body centered cubic lattice

% The boundary conditions are not arbitrary but fixed by
Floguet-Bloch theorem
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Symmetries

By symmetry one can consider only one nucleus in a cell .

% The shape of the cell is fixed by symmetry
Example : body centered cubic lattice

% The boundary conditions are not arbitrary but fixed by
Floguet-Bloch theorem

o{r + T} = e T {r}

Prescription of Magierski et al = only & = 0 solutions
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Back to the W-S approximation

E. P. Wigner & F Seitz, Phys. Rev.
43 (1933), 804.
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E. P. Wigner & F. Seitz, Phys. Rev.
43 (1933), 804.

Chemical properties of metallic sodium (one valence electron) ?

prf{r}t =~ po{r}e "
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Back to the W-S approximation

E. P. Wigner & F. Seitz, Phys. Rev.
43 (1933), 804.

Chemical properties of metallic sodium (one valence electron) ?
pr{r} ~ po{r}e "

« It will be quite a good approximation to replace the polyhedron
by a sphere of equal volume, and to take as boundary conditions
that the derivative of the wave function vanishes at the boundary
of this sphere. »

IATEX — p.37



Single particle energy spectrum



Single particle energy spectrum

Energy bands possess a lattice symetry

IATEX — p.38



Single particle energy spectrum

Energy bands possess a lattice symetry

Y Invariance under some lattice translations

IATEX — p.38



Single particle energy spectrum

Energy bands possess a lattice symetry

Y Invariance under some lattice translations

‘&x{k + K} = E,{k} I

IATEX — p.38



Single particle energy spectrum

Energy bands possess a lattice symetry

Y Invariance under some lattice translations

‘&x{k + K} = E,{k} I

The set of all K = reciprocal lattice
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Y Invariance under some lattice translations

‘ga{k + K} — ga{k} I

The W-S cell of the reciprocal lattice=first Brillouin Zone
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Single particle energy spectrum

Energy bands possess a lattice symetry

Y Invariance under some lattice translations

‘ga{k + K} — ga{k} I

The W-S cell of the reciprocal lattice=first Brillouin Zone
Example : body centered cubic lattice
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Single particle energy spectrum

Energy bands possess a lattice symetry

Y Invariance under some lattice translations

‘&X{k + K} = E,{k} I

The W-S cell of the reciprocal lattice=first Brillouin Zone

% Invariance under rotations of the reciprocal lattice
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Single particle energy spectrum

Energy bands possess a lattice symetry

Y Invariance under some lattice translations

‘&X{k + K} = E,{k} I

The W-S cell of the reciprocal lattice=first Brillouin Zone

% Invariance under rotations of the reciprocal lattice

‘ ga{Rk} — goz{k} I

= energy spectrum is contained within IBZ
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Single particle energy spectrum

Energy bands possess a lattice symetry

Y Invariance under some lattice translations

‘&X{k + K} = E,{k} I

The W-S cell of the reciprocal lattice=first Brillouin Zone

% Invariance under rotations of the reciprocal lattice

‘ ga{Rk} — ga{k} I

= energy spectrum is contained within IBZ

Example : bcc lattice
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Ground state (T=0)

Lowest energy state for a given density n, ?
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Lowest energy state for a given density n, ?

% Aufbau principle : filling of the lowest single particle energy
states up to the Fermi level

d3k
=3 T )
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Lowest energy state for a given density n, ?

% Aufbau principle : filling of the lowest single particle energy
states up to the Fermi level

d3k
=3 T )

% Fermi surface S, = {k,a\ E{k} = }, V. = (27)°n,
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Ground state (T=0)

Lowest energy state for a given density n, ?

% Aufbau principle : filling of the lowest single particle energy
states up to the Fermi level

d3k
=3 T )

% Fermi surface S, = {k,a\ E{k} = }, V. = (27)°n,

In the empty lattice (uniform) limit , the Fermi surface is a sphere
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Example of Fermi surfaces

Examples in solid state physics : Sodium (bcc), Copper (fcc) and
Cobalt (hcp)

http ://www.phys.ufl.edu/fermisurface/

Landau-Luttinger theorem : V_ = (27)3n,,

J. M. Luttinger, Phys. Rev. 119 (1960), 1153.
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crystal symmetry
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1 2
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Bloch theorem ensures that the density possesses the full
crystal symmetry

% At the cell edge V n,{r} € cell face by symmetry

% Inside nuclei Vn,{T} = 0 whenever crystal is invariant
under space inversion
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Bloch theorem ensures that the density possesses the full
crystal symmetry

% At the cell edge V n,{r} € cell face by symmetry

% Inside nuclei Vn,{T} = 0 whenever crystal is invariant
under space inversion

=- N0 spurious density fluctuations
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Neutron density and symmetries

1 2
e} = s 2 @ lpadr)

Bloch theorem ensures that the density possesses the full
crystal symmetry

% At the cell edge V n,{r} € cell face by symmetry

% Inside nuclei Vn,{T} = 0 whenever crystal is invariant
under space inversion

= No spurious density fluctuations
= no need for ad hoc prescriptions!
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Neutron star crust in the neutron drip region
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Neutron star crust in the neutron drip region

Hartree-Fock calculation with Skyrme (SLy4) effective
nucleon-nucleon interactions

h2

_V.an@{r}

Vorirt+Un{r}ordr f—iWy{r}-Vxopr{r} = Epi{r}
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Neutron star crust in the neutron drip region

Hartree-Fock calculation with Skyrme (SLy4) effective
nucleon-nucleon interactions

h2

_V.an@{r}

Vorirt+Un{r}ordr f—iWy{r}-Vxopr{r} = Epi{r}

+Bloch boundary conditions -
y pr{r+T} = e T {r}
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Neutron star crust in the neutron drip region

Hartree-Fock calculation with Skyrme (SLy4) effective
nucleon-nucleon interactions

h2

_V.an@{r}

Vor{rt+Un{rtor{r}—iWu{r}-Vxop{r} = Epoi{r}

+Bloch boundary conditions -
y pr{r+T} = e T {r}

Equilibrium lattice spacing and nuclear composition taken from
Negele & Vautherin (1973)
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Neutron star crust in the neutron drip region

Hartree-Fock calculation with Skyrme (SLy4) effective
nucleon-nucleon interactions

h2
2mpe{r}

-V Vor{rt+Un{rtor{r}—iWn{r}-Vxopr{r} = Epk{r}

+Bloch boundary conditions -
y pr{r+T} = e T {r}

Equilibrium lattice spacing and nuclear composition taken from
Negele & Vautherin (1973)

% Body centered cubic lattice
% W-S sphere radius R..; ~ 54.1 fm

* np{r} and ny,{r} from N&V + ETF = m,®{r}, U,{r} and
Wi {r}
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Linearised Augmented Plane Wave method

Andersen (1975) from the idea of Slater (1937).
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Variational method : gx{r} = > capa{r}
% Inside the Slater sphere (1)
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Linearised Augmented Plane Wave method

Variational method : gx{r} = > capa{r}
% Inside the Slater sphere (1)

+00 [
dairy=> > (Azmul{f:z,r} + Bzmuz{&,r}) Yim {7}

[=0 m=-—I
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Linearised Augmented Plane Wave method

Variational method : gx{r} = > capa{r}
% Inside the Slater sphere (1)

+00 [
dairy=> > (Azmul{&,r} + Bzmuz{&,r}) Yim {7}

[=0 m=-—I

wi{&;, r} radial solution for fixed &

1d., B d R21(1 + 1)
T2 ar 2mype{r} ar * (Un{’r} + 2mype {r}r? w = e

_du
- O€

U
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Linearised Augmented Plane Wave method

Variational method : gx{r} = > capa{r}
% Inside the Slater sphere (1)

+00 [
dairy=> > (Azmul{&,r} + Bzmuz{&,r}) Yim {7}

[=0 m=-—I

% In the intersticial region (II)
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Variational method : gx{r} = > capa{r}
% Inside the Slater sphere (1)

+00 [
dairy=> > (Azmul{&,r} + Bzmuz{&,r}) Yim {7}

[=0 m=-—I

% In the intersticial region (II)

1 .
_ iqa-T
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IATEX — p.43



Linearised Augmented Plane Wave method

Variational method : gx{r} = > capa{r}
% Inside the Slater sphere (1)

+00 [
dairy=> > (Azmul{&,r} + Bzmuz{&,r}) Yim {7}

[=0 m=-—I

% In the intersticial region (II)

1 .
_ iqa-T
¢a{r} —V e

cell

q. = k + K, are chosen so as to satisfy Bloch boundary
conditions .
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Linearised Augmented Plane Wave method

Variational method : gx{r} = > capa{r}
% Inside the Slater sphere (1)

+00 [
dairy=> > (Azmul{&,r} + Bzmm{&,r}) Yim {7}

[=0 m=-—I

% In the intersticial region (II)

1 .
_ iqa-T
¢a{r} —V e

cell

q. = k + K, are chosen so as to satisfy Bloch boundary
conditions .

A, and By, are fixed by matching ¢ and V¢ on the sphere.
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Neutron band structure
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Neutron band structure

Band structure, W-S approximation with Negele & Vautherin
boundary conditions, Fermi gas
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Neutron band structure

Band structure, W-S approximation with Negele & Vautherin
boundary conditions, Fermi gas

= Despite strong nuclear potential, energy spectrum is very
close to that of ideal Fermi gas except for avoided crossings
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PK cancellation theorem

Phillips & Kleinman theorem, Phys. Rev. 116 (1959) 287.

Equation for the unbound states ?
Given any basis set ¢, orthogonalise to core states

‘gba |Pa) Z ©e) (Pe|Pa)

= non local, energy dependent potential !

Vaplr) = / ErVale, Yot} Valer'} = 3 (E—)et{r b oefr)
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PK cancellation theorem

Phillips & Kleinman theorem, Phys. Rev. 116 (1959) 287.
Equation for the unbound states ?
Given any basis set ¢, orthogonalise to core states

‘gba |Pa) Z ©e) (Pe|Pa)

= non local, energy dependent potential !
Viplrh = [ Vil holt'}) Va(er'} = 3 (€€t }eedr)

% outside nuclei p.{r} ~ 0 = Vi vanishes
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PK cancellation theorem

Phillips & Kleinman theorem, Phys. Rev. 116 (1959) 287.
Equation for the unbound states ?
Given any basis set ¢, orthogonalise to core states

‘gba |Pa) Z ©e) (Pe|Pa)

= non local, energy dependent potential !
Viplrh = [ Vil holt'}) Va(er'} = 3 (€€t }eedr)

% outside nuclei p.{r} ~ 0 = Vi vanishes
* (o|[VRe) = 32.(€ — &) [(pelp)
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PK cancellation theorem

Phillips & Kleinman theorem, Phys. Rev. 116 (1959) 287.
Equation for the unbound states ?
Given any basis set ¢, orthogonalise to core states

‘gba |Pa) Z ©e) (Pe|Pa)

= non local, energy dependent potential !
Viplrh = [ Vil holt'}) Va(er'} = 3 (€€t }eedr)

% outside nuclei p.{r} ~ 0 = Vi vanishes
% Vg Is repulsive for unbound states £ > £,
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PK cancellation theorem
Phillips & Kleinman theorem, Phys. Rev. 116 (1959) 287.

Equation for the unbound states ?
Given any basis set ¢, orthogonalise to core states

‘gba |Pa) Z ©e) (Pe|Pa)

= non local, energy dependent potential !
Viplrh = [ Vil holt'}) Va(er'} = 3 (€€t }eedr)

% outside nuclei p.{r} ~ 0 = Vi vanishes
% Vg Is repulsive for unbound states £ > £,

= screening of the nuclei
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PK cancellation theorem

Phillips & Kleinman theorem, Phys. Rev. 116 (1959) 287.
Equation for the unbound states ?
Given any basis set ¢, orthogonalise to core states

‘gba |Pa) Z ©e) (Pe|Pa)

= non local, energy dependent potential !
Viplrh = [ Vil holt'}) Va(er'} = 3 (€€t }eedr)

% outside nuclei p.{r} ~ 0 = Vi vanishes
% Vg Is repulsive for unbound states £ > £,

= dripped neutrons in the bulk behave as nearly free particles!
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Band gaps and “neutronics”

Lattice spacing, nuclear composition and density of dripped
neutrons vary with depth
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Band gaps and “neutronics”

Lattice spacing, nuclear composition and density of dripped

neutrons vary with depth
=- neutron band structure has to be calculated for each layer of

the crust
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Band gaps and “neutronics”

Lattice spacing, nuclear composition and density of dripped

neutrons vary with depth
=- neutron band structure has to be calculated for each layer of

the crust

Does there exist a neutronic band
gap in some layers of the inner

crust ?

Enerqy (eV)
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Band gaps and “neutronics”
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Band gaps and “neutronics”

% gaps exist in any 1D periodic medium
Rayleigh, Phil. Mag. 24 (1887), 145.
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% gaps exist in any 1D periodic medium
Rayleigh, Phil. Mag. 24 (1887), 145.

% no trivial answers for higher dimensions
= numerical calculations
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Band gaps and “neutronics”

% gaps exist in any 1D periodic medium
Rayleigh, Phil. Mag. 24 (1887), 145.

% no trivial answers for higher dimensions
= numerical calculations

Signatures of band gaps in the single particle density of states

dn d3k
NiE) =g =2 | Gete - eati)
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Fermi surface integrations

How to evaluate [ f{k}dS, ?
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Fermi surface integrations

How to evaluate [ f{k}dS, ?
Gilat-Raubenheimer scheme :

% the BZ is partitioned into small cells
% within each cell the Fermi surface is approximated by a plane

The single particle energy is extrapolated from the center of
the cell

E(k} = E{ke) + (k — ke) - Vil {ke)
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Fermi surface integrations
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% the BZ is partitioned into small cells
% within each cell the Fermi surface is approximated by a plane

The single particle energy is extrapolated from the center of
the cell

E(k} = E{ke) + (k — ke) - Vil {ke)

% f Is supposed to be constant in each cell
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Fermi surface integrations

How to evaluate [ f{k}dS, ?
Gilat-Raubenheimer scheme :

% the BZ is partitioned into small cells
% within each cell the Fermi surface is approximated by a plane

The single particle energy is extrapolated from the center of
the cell

E(k} = E{ke) + (k — ke) - Vil {ke)

% f Is supposed to be constant in each cell

= [ kS, = 3 wef{i) S,

S. can be calculated analytically
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Density of states and band gaps



Density of states and band gaps

1 ds.,
band theory N{EH= (27r)3h7{ v

m.)3/2
N{E} = (2%2;3 VE




Density of states and band gaps

1 ds.,
band theory N{E}= (27r)3h7{ v

iIdeal Fermi gas

0,0003

5850 GR cells

)

?_0,00025

o
[e}
3
N

0,00015

Density of states (M ev'iim

o
[=]
]
s

5e-05

0,05 0,1 0,15 0,2 0,25 0,3
Fermi energy (MeV)
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Neutron current

Neutron current in the crust frame ?
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Neutron current

Neutron current in the crust frame ?

; 1 0&,
n_Z/ Vak 27T3> vak:%aki
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Neutron current

Neutron current in the crust frame ?

o108,
TL—Z/ Vak 271'37 vak_ﬁaki

Lowest energy state for given density n,, and current n* ?
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Neutron current

Neutron current in the crust frame ?

o108,
TL—Z/ Vak 271'?” vak_ﬁaki

Lowest energy state for given density n,, and current n* ?

= uniform displacement of the Fermi surface

Eo = |1+ D7y, p; = hok;
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Neutron current

Neutron current in the crust frame ?

. 1 0&,,
n—Z/ 2773’ vo‘k_ﬁ(?ki

Lowest energy state for given density n,, and current n* ?

=- uniform displacement of the Fermi surface

Ea = 1L+ PiVhy, pi = hék;

Etat fondamental Etat avec courant
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Neutron transport properties

Carter, Chamel, Haensel, Nucl. Phys. A748 (2005) 675.
Linear response to finite neutron current ?
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Neutron transport properties

Carter, Chamel, Haensel, Nucl. Phys. A748 (2005) 675.
Linear response to finite neutron current ? = mobility tensor

n' =K%;, KY = 27)? Z/ VeV 0{Eak — }d%k

For cubic crystals % = [C~y¥

I 1
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S ToETPA / vedS;
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Neutron transport properties

Carter, Chamel, Haensel, Nucl. Phys. A748 (2005) 675.
Linear response to finite neutron current ? = mobility tensor

1 o
(2ﬂ)32/ 0l vl M E ek — 1} &k

n' =K9;, K9 =

For cubic crystals % = [C~y¥

I 1
_ S (@)
S ToETPA / vedS;

Setting n' = nev
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Neutron transport properties

Carter, Chamel, Haensel, Nucl. Phys. A748 (2005) 675.
Linear response to finite neutron current ? = mobility tensor

1 o
(2ﬂ)32/ 0l vl M E ek — 1} &k

n' =K9;, K9 =

For cubic crystals % = [C~y¥

I 1
_ S (@)
S ToETPA / vedS;

Setting n* = nsv* where ny is the density of conduction neutrons
with mean velocity v
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Neutron transport properties

Carter, Chamel, Haensel, Nucl. Phys. A748 (2005) 675.
Linear response to finite neutron current ? = mobility tensor

1 o
(2ﬂ)32/ 0l vl M E ek — 1} &k

n' =K9;, K9 =

For cubic crystals % = [C~y¥

I 1
_ S (@)
S ToETPA / vedS;

Setting n* = nsv* where ny is the density of conduction neutrons
with mean velocity ¢ = p; = m.,v;
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Neutron transport properties

Carter, Chamel, Haensel, Nucl. Phys. A748 (2005) 675.
Linear response to finite neutron current ? = mobility tensor

(2ﬂ)32/ VeV 0{Eak — 1 d3k

n' =K9;, K9 =

For cubic crystals % = [C~y¥

I 1
_ S (@)
S ToETPA / Ve

Setting n* = nsv* where ny is the density of conduction neutrons
with mean velocity ¢ = p; = m.,v;
with effective neutron mass m, = ng/K

IATEX — p.51



Neutron transport properties

Carter, Chamel, Haensel, Nucl. Phys. A748 (2005) 675.
Linear response to finite neutron current ? = mobility tensor

n' =K%;, KY = 27)? Z/ VeV 0{Eak — }d%k

For cubic crystals % = [C~y¥

I 1
_ - S (a)
S ToETPA / vadS;

Setting n* = nsv* where ny is the density of conduction neutrons
with mean velocity ¢ = p; = m.,v;

with effective neutron mass m, = ng/K

= Neutron transport properties are determined by the shape of

the Fermi surface
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Two fluid model

Carter, Chamel & Haensel, astro-ph/0408083.
At macroscopic scales > lattice spacing
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Two fluid model
Carter, Chamel & Haensel, astro-ph/0408083.
At macroscopic scales > lattice spacing

Describe the crust as a 2 fluid mixture : plasma of charged
particles + neutron gas coupled by entrainment
Uint — Uint{nm nt, Ve — Uf}
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Two fluid model
Carter, Chamel & Haensel, astro-ph/0408083.
At macroscopic scales > lattice spacing

Describe the crust as a 2 fluid mixture : plasma of charged
particles + neutron gas coupled by entrainment

Uint — Uint{nm nf, Ve — Uf}

= momenta and velocities are not aligned

pPf = mvy + mgf(vc — Vf)

Pc = MV — mgc(vc — Vf)
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Two fluid model
Carter, Chamel & Haensel, astro-ph/0408083.
At macroscopic scales > lattice spacing

Describe the crust as a 2 fluid mixture : plasma of charged
particles + neutron gas coupled by entrainment

Uint — Uint{nm nf, Ve — Uf}

= momenta and velocities are not aligned

pr = mvy + meg(ve — Vi)

Pc = MV — mgc(vc — Vf)

ef y  &c = TE&f

= m, IS an important parameter for hydrodynamical simulations
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Two fluid model
Carter, Chamel & Haensel, astro-ph/0408083.
At macroscopic scales > lattice spacing

Describe the crust as a 2 fluid mixture : plasma of charged
particles + neutron gas coupled by entrainment

Uint — Uint{nm nf, Ve — Uf}

= momenta and velocities are not aligned

pr = mvy + meg(ve — Vi)

Pc = MV — mgc(vc — Vf)

ef y  &c = TE&f

= m, IS an important parameter for hydrodynamical simulations
Ex : If m, Is sufficiently large = superfluid two-stream instability
Andersson et al, MNRAS 354 (2004) 101
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Homogeneous nuclear matter
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Homogeneous nuclear matter

Equations are exactely solvable
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Homogeneous nuclear matter

Equations are exactely solvable

h? k2

2m, ®

g{k) =

+ Uy
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Homogeneous nuclear matter

Equations are exactely solvable = Fermi surface is a sphere of
radius &, = (372n,)1/3,
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radius &, = (372n,)1/3,
Effective mass ?
All states are conduction states = n¢ = ny,
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Homogeneous nuclear matter

Equations are exactely solvable = Fermi surface is a sphere of

radius &, = (372n,)1/3,
Effective mass ?
All states are conduction states = n¢ = ny,

d& ) -1
p— mn@
k=k_

2
My — F(]k‘

Typically m, < m, (SLy4)
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Neutron star crust matter

Different length scales!
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Neutron star crust matter

Different length scales!

% Microscopic scales < nuclear size
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Neutron star crust matter

Different length scales!

% Microscopic scales < nuclear size

Skyrme mass
o o
0] ©

o
\l

06 ! | ! | ! | ! | ! |
r (fm)
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Neutron star crust matter

Different length scales!

% Microscopic scales < nuclear size = m® < m,
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Neutron star crust matter

Different length scales!

% Microscopic scales < nuclear size = m® < m,
% Macroscopic scales > lattice spacing
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Neutron star crust matter

Different length scales!

% Microscopic scales < nuclear size = m® < m,

% Macroscopic scales > lattice spacing
conduction states are such that £,{k} > max{U,}

IATEX — p.54



Neutron star crust matter

Different length scales!

% Microscopic scales < nuclear size = m® < m,

% Macroscopic scales > lattice spacing = m, = ng/IC > my
conduction states are such that £,{k} > max{U,}

5850 GR cells

Effective mass

1le-05 | 2e-05 | 3e-05 | 4e-05 | 5e-05
Dripped neutron density (fm'3)

IATEX — p.54



Metal or insulator ?

If conduction or dripped neutrons of density ny are
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Metal or insulator ?

If conduction or dripped neutrons of density ny are
* free = K = ng/my (my = my)
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Metal or insulator ?

If conduction or dripped neutrons of density ny are
* free = K = ng/my (my = my)
% bound = K =0 (my, — +00)
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Metal or insulator ?

If conduction or dripped neutrons of density ny are

* free = K = ng/my (my = my)
% bound = K =0 (my, — +00)

5e+39

s? Mev'™h
iaN
&
3

< 3e+39

m

2e+39

Mobility (f

1e+39

5850 GR cells

1e-05

2e-05

3e-05

4e-05

Dripped neutron density (fm'3)

5e-05
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Bragg scattering and Fermi surface topology

Neutron star crust matter has a lower symmetry than
homogeneous nuclear matter
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Bragg scattering and Fermi surface topology

Neutron star crust matter has a lower symmetry than

homogeneous nuclear matter
= avoided crossings

&
B

> k

&

I\N__

> k
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Bragg scattering and Fermi surface topology

Neutron star crust matter has a lower symmetry than
homogeneous nuclear matter
= avoided crossings

& &

'y A

\1//
> | > |
= holes on the Fermi surface!
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Fermi surface area

B 5850 GR cells =

)
|
|

o 0,15

Fermi surface area (fm
o
|_\

o
o
($2]

. I . I . I . I . I
1e-05 2e-05 3e-05 4e-05 5e-05

Dripped neutron density (fm'3)
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Fermi surface area

B 5850 GR cells =

0,15+ —

Fermi surface area (fm'z)
o
'_\

o
o
($2]

. I . I . I . I . I
1e-05 2e-05 3e-05 4e-05 5e-05

Dripped neutron density (fm'3)

= Fermi surface area is reduced while volume is unchanged
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Fermi surface and effective mass

Effects of Bragg scattering ?
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Fermi surface and effective mass

Effects of Bragg scattering ?

% around avoided crossings

1
v th
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Fermi surface and effective mass

Effects of Bragg scattering ?

% around avoided crossings

1
v th

Y Fermi surface Is reduced

IATEX — p.58



Fermi surface and effective mass

Effects of Bragg scattering ?

% around avoided crossings

1
v th

Y Fermi surface Is reduced

= m, = ng/K > my since K « [vdS,
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Fermi surface and effective mass

Effects of Bragg scattering ?

% around avoided crossings

1
v th

Y Fermi surface is reduced
= m, = ng/K > my since K « [vdS,

Effective mass is a probe of the topology of the Fermi surface
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Deep layers of the inner crust

T-F calculation of Oyamatsu, Nucl. Phys. A561(1993) 431.
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Deep layers of the inner crust

T-F calculation of Oyamatsu, Nucl. Phys. A561(1993) 431.

% Spherical nuclei for ny, < 0.06 fm=3
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Deep layers of the inner crust

T-F calculation of Oyamatsu, Nucl. Phys. A561(1993) 431.

% Spherical nuclei for ny, < 0.06 fm=3

% Pasta layers for 0.06 < ny, < 0.09 fm—3 : spaghetti, lasagna,
tubes and bubbles.
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Deep layers of the inner crust

T-F calculation of Oyamatsu, Nucl. Phys. A561(1993) 431.

% Spherical nuclei for ny, < 0.06 fm=3

% Pasta layers for 0.06 < ny, < 0.09 fm—3 : spaghetti, lasagna,
tubes and bubbles.
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Deep layers of the inner crust

Thomas-Fermi calculation of Oyamatsu, Nucl. Phys. A561(1993)
431.

012 - | | | : .
@ neutron ,
£ 008 i
Z:l s proton Sphare {n,,-n 055 [rrn 3};
R =i T s
0.08}1 _

08PN\ NN NN

0.04} Slab (n,=0.08) 3

1 T e TN e, <R "W e W W
ﬂ.m-— Cylindrical hole (n,=0.084) -~

o T N W g SN o W -

0.04}- Spherical hole (n,=0.0857) -
| i 1 1 _——=-—| e
D'ml} E:D 40 60 80 100 120 140
r (fm)
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Deep layers of the inner crust
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Deep layers of the inner crust

DFT calculations with the functional of Oyamatsu & Yamada,
[Nucl. Phys. A578 (1994) 181] adjusted on the EOS of
Friedman-Pandharipande (1981)

ﬁ2

B 2Mmy

V2 + Un{r}|orf{r} = Epi{r}
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Deep layers of the inner crust

DFT calculations with the functional of Oyamatsu & Yamada,
[Nucl. Phys. A578 (1994) 181] adjusted on the EOS of
Friedman-Pandharipande (1981)

ﬁ2

B 2Mmy

V2 + Un{r}|orf{r} = Epi{r}

+ Bloch boundary conditions
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Deep layers of the inner crust

DFT calculations with the functional of Oyamatsu & Yamada,
[Nucl. Phys. A578 (1994) 181] adjusted on the EOS of
Friedman-Pandharipande (1981)

[ i VZ+ Un{r}] pr{ry = Epidr}

B 2Mmy
+ Bloch boundary conditions
Equations are solved on a plane wave basis set

Rk + K,)?

< gcutoff
2Mmy

pr{r} = coel R,
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Effective mass in layers of spherical nuclei/bubbles

Chamel, Nucl.Phys. A747 (2005) 109.

20 T T T T | T | T |
" m simplecubic
A Dbody centered cubic
15 A face centered cubic _
0O simplecubic
@ A body centered cubic
c face centered cubic
210 -
ke
[
5 M —
| | | | | | o
8.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Baryon density (f m'3)
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Effective mass in layers of spherical nuclei/bubbles

Chamel, Nucl.Phys. A747 (2005) 109.

20 T T T T | T | T |
" m simplecubic
A Dbody centered cubic
15 A face centered cubic _
0O simplecubic
@ A body centered cubic
c face centered cubic
210 -
ke
I
S M —
| \ | .

1 | 1 | 1 | 1 | 1
80z 003 004 005 006 007 008 009
Baryon density (f m'3)

= strong enhancement of m, at low densities
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Effective mass in layers of spherical nuclei/bubbles

Chamel, Nucl.Phys. A747 (2005) 109.

20 T T T T | T | T |

" m simplecubic
A Dbody centered cubic
A face centered cubic _
simple cubic
A body centered cubic
face centered cubic

[EEY
a1
I
O

Effective mass
5
[

o1
[
[ <

R A R S NS R SR SRS
8.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Baryon density (f m'3)
= strong enhancement of m, at low densities

= small dependence on lattice structure
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Effective mass in the pasta phase

Carter, Chamel, Haensel, Nucl. Phys. A748 (2005) 675.
Pasta phases are anisotropic = mobility tensor %
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Nuclear matter is homogeneous along slabs (lasagna) or
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Effective mass in the pasta phase

Carter, Chamel, Haensel, Nucl. Phys. A748 (2005) 675.

Pasta phases are anisotropic = mobility tensor %
Nuclear matter is homogeneous along slabs (lasagna) or

cylinders/tubes = no Bragg scattering Kl = n,, /m,
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Effective mass in the pasta phase

Carter, Chamel, Haensel, Nucl. Phys. A748 (2005) 675.

Pasta phases are anisotropic = mobility tensor %
Nuclear matter is homogeneous along slabs (lasagna) or

cylinders/tubes = no Bragg scattering Kl = n,, /m,

+ rods (hexagonal lattice)
m rods (square lattice) I

=
N
T T T

4 . + slabs ]
e o holes (hexagonal lattice)
013 o holes (square lattice)
il .
o ] transverse effective mass

' 1 — 1
2 | i . 4 m* p— nf/lC
§ 1.1 = —
|_

T | | | B T R ?

0.06 | 0.065 | 0.07 | 0.075 | 0.08 | 0.085
Baryon density (fm'g)
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Effective mass in the pasta phase

Carter, Chamel, Haensel, Nucl. Phys. A748 (2005) 675.

Pasta phases are anisotropic = mobility tensor %
Nuclear matter is homogeneous along slabs (lasagna) or

cylinders/tubes = no Bragg scattering Kl = n,, /m,

\ \ ‘ \
+ rods (hexagonal lattice)
14 = = rods(squarelattice) ||
4 . + slabs ]
e o holes (hexagonal lattice)
013 o holes(square lattice)  H
e .
©
3 1.2+ =
T [
2 .
|: 117 = ]
* % * 1
1 *og g
\ ‘ \ ‘ \ ‘ \ ‘ \ ‘ \
0.06 0.065 0.07 0.075 0.08 0.085

Baryon density (fm'g)

transverse effective mass
mt = ng /Kt

= m, ~ my Since pasta phases are nearly homogeneous
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Effective mass in the pasta phase

Carter, Chamel, Haensel, Nucl. Phys. A748 (2005) 675.

Pasta phases are anisotropic = mobility tensor %
Nuclear matter is homogeneous along slabs (lasagna) or

cylinders/tubes = no Bragg scattering Kl = n,, /m,

+ rods (hexagonal lattice)
m rods (square lattice) I

=
N
T T T

4 . + slabs ]
e o holes (hexagonal lattice)
.g 1.3 o holes (square lattice)
8 | : :
e ] transverse effective mass

' 1 — 1
2 | i . 4 m* p— nf/lC
811} . .
|_

T | | | | R ?

0.06 | 0.065 | 0.07 | 0.075 | 0.08 | 0.085
Baryon density (fm'g)

= m, ~ my Since pasta phases are nearly homogeneous
= mobility is bounded K > 2n,/3m, (1D) and K > n,/3m, (2D)
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Spin-orbit coupling

Chamel, Nucl.Phys. A747 (2005) 109.
Cylinder shaped nuclei (n;, = 0.06 fm—3) with spin-orbit coupling

dnb d 1

1
VLS{T} = ; ()\1? — )\Qg(nn — np)> §ZZO'Z

Energy (MeV)

= myT/my = 1.35 — m, " /my, = 1.37
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Superfluidity and Bragg scattering

% Mean field approximation
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Superfluidity and Bragg scattering

% Mean field approximation

= Hartree-Fock Bogoliubov (Bogoliubov-de Gennes)
equations

(H{r} - A{r} ) (u{r}> _ (u{r})
Ax{r} —H*{r}+ vir}) \o{r}

assuming contact interactions in particle-particle and
particle-hole channels
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Superfluidity and Bragg scattering

% Mean field approximation

= Hartree-Fock Bogoliubov (Bogoliubov-de Gennes)
equations

(H{r} - A{r} ) (u{r}> _ (u{r})
Ax{r} —H*{r}+ vir}) \o{r}

assuming contact interactions in particle-particle and
particle-hole channels

% Lattice symmetry A{r + T} = A{r} and H{r + T} = H{r}

= Floguet-Bloch theorem

w{r + T} = *Tu{r} ufr+T} =Ty {r}

IATEX — p.65



BCS approximation



BCS approximation

A{r} slowly varying
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A{r} slowly varying

= / Br o5 T} Ak r} ~ Ao {k}6us

Uak{Tr} = @ar{r}cosboi  vVor{r} = par{r} sin b,
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BCS approximation

A{r} slowly varying

= / Br o5 T} Ak r} ~ Ao {k}6us

Uak{Tr} = @ar{r}cosboi  vVor{r} = par{r} sin b,

7_(9004k — ga{k}‘ypak

= Eolk} = \/(504{1{} — () + Aa{k}?

Eo{k} + Ealk} — 1 sin 0, = Eo{k}; —Eaik) + 1

2 _
cos™ Bk = 2F, (k! 2B, {k}



Pairing and effective mass

Carter, Chamel, Haensel (2005), Nucl. Phys. A in press
Effects of pairing on mobility ?
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Pairing and effective mass

Carter, Chamel, Haensel (2005), Nucl. Phys. A in press
Effects of pairing on mobility ?

Y without pairing

d3k
(2m)°

/C:%j% / o VkEa I Eall) — 1}
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Pairing and effective mass

Carter, Chamel, Haensel (2005), Nucl. Phys. A in press
Effects of pairing on mobility ?

Y without pairing

d3k
(2m)°

/C:%j% / o VkEa I Eall) — 1}

% Wwith pairing

1 (1 , Ak} d3k

IATEX — p.67



Pairing and effective mass

Carter, Chamel, Haensel (2005), Nucl. Phys. A in press
Effects of pairing on mobility ?

Y without pairing

d3k
(2m)°

;czgé / o VkEa I Eall) — 1}

% Wwith pairing

1 (1 , Ak} d3k
L= ;5 / It 2Ea{{k}}3 (27)3

= mobility is not qualitatively affected by pairing!
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Pairing and effective mass

Carter, Chamel, Haensel (2005), Nucl. Phys. A in press
Effects of pairing on mobility ?

Y without pairing

d3k
(2m)?

/C:%j% / o VkEa I Eall) — 1}

% Wwith pairing

1 (1 , Ak} d3k
L= ;5 / It 2Ea{{k}}3 (27)3

= mobility is not qualitatively affected by pairing!

In uniform nuclear matter m, = n, /K = m,® independent of A
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Neutronics in the crust and pulsar glitches

% Some pulsars suddenly spin up = glitches 62 > 0
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% Some pulsars suddenly spin up = glitches 62 > 0

MJD — 50000

% Glitches interpreted as a sudden transfer of angular
momentum from the neutron superfluid to the crust
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Neutronics in the crust and pulsar glitches

% Some pulsars suddenly spin up = glitches 62 > 0

MJD — 50000

% Glitches interpreted as a sudden transfer of angular
momentum from the neutron superfluid to the crust

% Neutron transport in the crust is strongly affected by Bragg
scattering (m, > my)

= glitches are direct probes for neutronics in the crust!
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Summary & Perspectives

% Structure of the outer crust completely determined by known
nuclei up to p ~ 10 g.cm=3

% So far only one fully self-consistent guantum calculation of
the inner crust by Negele& Vautherin (1973) = strong
proton shell effects, size of nuclear clusters ~ independent
of density. Consistent results from TF and CLDM.

% But recent calculations of Baldo et al. = no shell effects, Z
very sensitive to pairing! Remain to be clarified. Medium
effects on the pairing field ? Superfluidity in the crust =
cooling, pulsar glitches.

% Necessity to go beyond the W-S approximation to study
neutron transport in the crust = band theory. Bragg
scattering = strong enhancement of neutron mass!!
Neutronics in the crust = oscillations modes, pulsar glitches

% Neutron band effects on the structure of the crust? on the
superfluidity ? Effects of disorders (impurities, defects, etc.)
on the transport properties ?
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