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The Galilean (and more generally Milne) invariance of Newtonian theory allows for
Killing vector fields of a general kind, whereby the Lie derivative of a field is not required
to vanish but only to be cancellable by some infinitesimal Galilean (respectively Milne)
gauge transformation. In this paper, it is shown that both the Killing–Milne vector fields,
which preserve the background Newtonian spacetime structure and the Killing–Cartan
vector fields, which in addition preserve the gravitational field, form a Lie subalgebra.
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1. Introduction

Whereas the concept of Killing vector fields has been widely used in the general rela-
tivity theory to derive conservation laws from spacetime symmetries (see e.g. Ref. 1),
its application to the Newtonian context is less well known. This mainly stems
from the fact that Newtonian mechanics has been traditionally formulated using an
“Aristotelian” decomposition of spacetime, as a direct product of a flat Euclidean
three-dimensional space with a one-dimensional Euclidean timeline. This is only
after Einstein proposed his theory of general relativity that a four-dimensional
geometric formulation of Newtonian theory was developed by Cartan2 (see e.g.
Refs. 3 and 4 for a review). This formulation has been recently extended so as to
include hydrodynamics5–8 (allowing for fluid and superfluid mixtures), elasticity9

and elasto-hydrodynamics.10

In Einstein’s theory of general relativity, the occurrence of spacetime symme-
tries implies the vanishing of the Lie derivative of the Riemannian metric gµν (using
Greek letters µ, ν = 0, 1, 2, 3 for spacetime indices) along one or several symmetry
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generators kµ
a , a = 0, 1, . . . (see e.g. Ref. 1). Although the Lie algebras of the cor-

responding Killing vector fields in Newtonian spacetime have been already studied
(see e.g. Ref. 11), the invariance of the physical laws of motion under Galilean (and
more generally Milne) transformations allows for Killing vector fields of a more
general kind, whereby the Lie derivative of a field is only required to be cancellable
by some infinitesimal Galilean (respectively Milne) gauge transformation.7 Two
different kinds of such Killing vector fields were introduced in Ref. 7: the Killing–
Milne vectors that preserve the Milne background structure of Newtonian space-
time and the Killing–Cartan vectors that in addition leave the gravitational field
invariant.

In this paper, we shall demonstrate that the Killing–Milne and Killing–Cartan
vector fields introduced in Ref. 7 form a Lie subalgebra after briefly reviewing
the structure of the Newtonian spacetime and discussing the properties of these
generalized Killing vector fields.

2. Newtonian Spacetime Structure

Let us first briefly recapitulate the geometric structure of the Newtonian space-
time. We shall adopt the same notations as in Ref. 7. The existence of a universal
time t leads to a foliation of the manifold into flat three-dimensional spaces. The
pushforward of the three-dimensional Euclidean metric γij (using Roman letters
i, j = 1, 2, 3 for space indices) yields a symmetric contravariant tensor γµν in the
four-dimensional spacetime. This tensor itself is not metric since

γµνtν = 0, (1)

where tν = ∂t/∂xν ≡ ∂νt. The tensors γµν and tµ specifies the so-called Coriolis
structure of Newtonian spacetime. A four-dimensional symmetric covariant tensor
γµν can be obtained by pulling back the Euclidean three-dimensional metric γij .
The degeneracy condition,

γµνeν = 0, (2)

implies the existence of a so-called “ether” frame flow vector eµ, whose normaliza-
tion can be chosen such that

eµtµ = 1. (3)

The vector eµ characterizes a particular Aristotelian coordinate system {t, X i}, in
which e0 = 1 and ei = 0 corresponding to the usual kind of spacetime decompo-
sition. The flatness of the three-dimensional hypersurfaces entails the existence of
a natural connection, whose components Γρ

µν = 0 vanish identically in the corre-
sponding Aristotelian coordinate system (in other words, the covariant derivative
∇µ is identifiable with the partial derivative ∂µ). In an arbitrary coordinate sys-
tem, some components of the connection may be nonzero. However, the associated
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covariant derivative should satisfy the following conditions:

∇ργ
µν = 0, ∇ργµν = 0, ∇µtν = 0, ∇µeν = 0. (4)

As first shown by Cartan,2 the gravitational vector field, defined by

gµ = −γµν∇νφ, (5)

φ denoting the Newtonian gravitational potential, can be absorbed in a gravita-
tionally modified connection

ωρ
µν = Γρ

µν − tµgρtν . (6)

The vector eµ hence the tensor γµν and the connection Γρ
µν are not uniquely

defined. The physical structure of the Newtonian spacetime is preserved by Galilean
transformations

eµ → ĕµ = eµ + bµ, (7)

where bµ is a spacelike boost velocity vector, whose spatial components bi in an
Aristotelian coordinate system are independent of the spatial coordinates X i and of
the time t. As first realized by Milne,12 the Newtonian laws of motion in the presence
of gravity are actually invariant under a more generic kind of transformations,
whereby the spatial components bi are allowed to depend on t, provided that the
gravitational vector field be transformed as gi → ği = gi − ai with ai = dbi/dt. In
an arbitrary coordinate system, the boost velocity vector will thus be required to
satisfy6

tµbµ = 0, γνρ∇ρb
µ = 0. (8)

Likewise, the relative acceleration vector field will be given by6

aµ = eν∇νbµ, (9)

so that the gravitational vector field transforms as follows:

gµ → ğµ = gµ − aµ. (10)

The invariance of the Newtonian theory with respect to Milne transfor-
mations (10) is embedded in the invariance of the Newton–Cartan connection
ω̆ρ

µν = ωρ
µν .

3. Killing–Milne and Killing–Cartan Vector Fields

The gauge invariance leads to symmetry generators kµ
a of a new kind7 such that

the corresponding Lie derivative of any (gauge-dependent) field q is only required
to vanish modulo some infinitesimal gauge transformation d̆aq:

£aq + d̆aq = 0, (11)

where £a ≡ ka£ denotes the Lie differentiation operator. Symmetry generators
that preserve the background spacetime structure, namely the tensors tµ, γµν and
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eµ (or equivalently tµ, γµν and the flat connection Γρ
µν) are termed Killing–Milne

vector fields.7 Since only eµ (or equivalently Γρ
µν) are gauge-dependent, the Killing–

Milne equations are

£atµ = 0, £aγµν = 0, £aeµ + d̆aeµ = 0. (12)

These conditions lead to the following equations7:

tν∇µkν
a = 0, (13)

γρ(µ∇ρk
ν)
a = 0, (14)

eν∇νkµ
a = bµ

a , (15)

where bµ
a is the relevant boost velocity vector field and we have used brackets to

indicate index symmetrization. A symmetry generator is termed Killing–Cartan
vector field7 if it also preserves the gravitational field gµ

£agµ + d̆agµ = 0, (16)

or equivalently the (gauge-independent) Newton–Cartan connection ωρ
µν

£aωρ
µν = 0. (17)

Such a distinction between Killing–Milne and Killing–Cartan vector fields does not
arise in the theory of general relativity since the invariance of the Riemannian metric
automatically ensures the invariance of the gravitational field. The condition (16)
or (17) yields7

DµDνkρ
a = −R ρ

σµ νkσ
a , (18)

or in terms of the gravitational potential,

eµDµβa = −kµ
aDµφ, (19)

where Dµ is the Newton–Cartan covariant derivative and R ρ
σµ ν the curvature ten-

sor.6 Let us remark that Eqs. (13) and (14) can be equivalently expressed as

tνDµkν
a = 0, (20)

γρ(µDρk
ν)
a = 0. (21)

This latter equation resembles Killing’s equation in Riemannian spacetimes1:

D(µka ν) = 0, (22)

where Dµ is the covariant derivative compatible with the metric.
It immediately follows from (22) that ka νuν is conserved along the geodesic

with tangent vector uν.1 The proof is straightforward:

uµDµ(ka νuν) = uµuνDµka ν + ka νuµDµuν = 0, (23)
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the first term vanishes from (22) and the second from the geodesic equation. In
Newtonian spacetime, we shall prove that the corresponding conserved quantity is

Ba ≡ kµ
a πµ − βa, (24)

where

πµ ≡ vµ −
(

1
2
v2 + φ

)
tµ, vµ ≡ γµνuν , v2 ≡ γµνuµuν = vµuµ (25)

and βa is the boost potential defined by6

bµ
a = γµν∇νβa, (26)

with bµ
a given by Eq. (15). Let us write the derivative of Ba along a geodesic with

tangent vector uµ:

uµDµBa = uµvνDµkν
a + kν

auµDµvν − 1
2
tνkν

auµDµv2 − 1
2
v2tνDµkν

a

− tνkν
auµDµφ − φuµtνDµkν

a − uµDµβa. (27)

Although uµDµuν vanishes from the geodesic equation, uµDµvν does not and is
given by

uµDµvν = uµuρDµγνρ = vµgµtν + γµνgµ, (28)

where we have used Eqs. (4) and (6) and the normalization uµtµ = 1. Likewise, we
find

uµDµv2 = 2gµvµ. (29)

Using Eqs. (28) and (29) as well as (20) in (27), we obtain

uµDµBa = uµvνDµkν
a + kν

agν − tνkν
auµDµφ − uµDµβa, (30)

where gν ≡ γµνgµ. Introducing the spacelike vector field vµ ≡ uµ − eµ and using
Eq. (15), Eq. (30) can be written as

uµDµBa = vµvνDµkν
a + kν

agν − tνkν
aeµDµφ − eµDµβa. (31)

The first term vanishes from the condition (21) that qualifies kµ
a as a Killing–Milne

vector field and the remaining terms cancel each other from Eq. (19) that qualifies
kµ

a as a Killing–Cartan vector field. We have thus proved that Ba is conserved along
a geodesic:

uµDµBa = 0. (32)

The maximum number of linearly independent Killing–Cartan vector fields can
be determined along the same line of reasoning as in Riemannian spacetimes.1 If
kµ

a and Kµ
ν ≡ Dνkµ

a are known at some point P , kµ
a and Kµ

ν can be calculated at
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any other point Q by integrating the following system of equations along any curve
connecting P and Q

ξµDµkν
a = ξµKν

µ, ξµDµKρ
ν = −ξµR ρ

σµ νkσ
a , (33)

where ξµ is the appropriate vector field and we have used Eq. (18). The number of
linearly independent Killing–Cartan vector fields is therefore equal to the number
of initial data, namely the components of kµ

a and Kµ
ν at point P . Equations (20)

and (21), which can be expressed as tνKν
µ = 0 and γρ(µK

ν)
ρ = 0, imply that Kν

µ

has only six independent components. With the four components of kµ
a , we can

thus conclude that the Newton–Cartan spacetime possesses at most ten linearly
independent Killing–Cartan vector fields.

4. Lie Subalgebra of Killing Vector Fields

The identity (see e.g. Ref. 13)

[ξa, ξb]£ q = ξa£ {ξb£ q} − ξb£ {ξa£ q} (34)

for any vector fields ξa and ξb automatically ensures that Killing vector fields of
the usual kind (whereby the Lie derivative of a field is required to vanish) form a
Lie subalgebra with the Lie bracket of two Killing vector fields ka and kb defined
by their commutator

[ka, kb]µ = kν
a∇νkµ

b − kν
b ∇νkµ

a = £akµ
b , (35)

where the last equality follows from the properties of the Lie derivatives (see e.g.
Ref. 13). We shall now demonstrate that Killing vector fields of the generic kind
form also a Lie subalgebra with the same definition of the Lie bracket.

Let us consider the successive action of an infinitesimal gauge transformation
and the Lie differentiation of a gauge-dependent field q with respect to an arbitrary
vector field ξ. Under a change of gauge eµ → ĕµ = eµ + bµ, the ensuing fields q̆

will be either a function of the boost velocity bµ (for q fields like γµν) or of the
corresponding acceleration aµ = eν∇νbµ (for q fields like gµ and Γρ

µν). We shall
treat these two cases separately. For q fields of the first kind, an infinitesimal gauge
transformation is defined by

d̆q = bµ ∂q̆

∂bµ
, (36)

where it is understood that the partial derivative is evaluated in the limit of vanish-
ing boost velocity vector field bµ → 0. By a suitable choice of coordinates adapted
to the vector field ξ, the Lie derivative reduces to a partial derivative to some
coordinate x1 (see e.g. Ref. 1): ξ£ = ∂/∂x1. In this coordinate system, the Lie
derivative of the field d̆q is thus simply given by

ξ£ d̆q =
∂bµ

∂x1

∂q̆

∂bµ
+ bµ ∂2q̆

∂x1∂bµ
. (37)
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Likewise, the infinitesimal gauge transformation of the field ξ£q is given by

d̆{ξ£ q} = bµ ∂2q̆

∂x1∂bµ
. (38)

This shows that the Lie differentiation and the gauge transformation do not com-
mute:

[ξ£ , d̆]q = ξ£ d̆q − d̆{ξ£ q} = (ξ£ bµ)
∂q̆

∂bµ
. (39)

Although the field q̆ depends on the boost velocity bµ corresponding to the specific
gauge transformation eµ → ĕµ = eµ+bµ, its functional form q̆{bµ} is actually gauge-
independent. In other words, the fields q̆a and q̆b obtained from the same field q by
the gauge transformations eµ �→ ĕµ = eµ+bµ

a and eµ �→ ĕµ = eµ+bµ
b respectively, are

such that q̆a{bµ
a} = q̆{bµ

a} and q̆b{bµ
b } = q̆{bµ

b }. Consequently, ∂q̆/∂bµ is independent
of bµ. It can thus be seen from Eq. (36) that the commutator (39) represents an
infinitesimal gauge transformation of the field q with a boost velocity vector field
given by ξ£bµ.

The two successive gauge transformations eµ �→ ĕµ = eµ+bµ
a and eµ �→ ĕµ = eµ+

bµ
b are obviously equivalent to the gauge transformation eµ �→ ĕµ = eµ + bµ

a + bµ
b . As

a consequence, the commutator of two infinitesimal gauge transformations vanishes:

[d̆a, d̆b]q = 0. (40)

Combining Eqs. (39), (40) and (34) we finally find

[ξa£ + d̆a, ξb£ + d̆b] = ξc£ + d̆c, (41)

where we have introduced the vector field ξc ≡ [ξa, ξb] and the infinitesimal gauge
transformation d̆c is associated with the boost velocity vector field,

bµ
c ≡ ξa£ bµ

b − ξb£ bµ
a . (42)

A similar analysis can be carried out for q̆ fields that depend on aµ rather
than bµ. In this case, an infinitesimal gauge transformation is defined by

d̆q = aµ ∂q̆

∂aµ
, (43)

where aµ = eν∇νbµ and the partial derivative is to be evaluated in the limit aµ → 0.
The functional form of q̆{aµ} is gauge independent therefore ∂q̆/∂aµ is independent
of aµ. Proceeding as previously, Eq. (41) is found to still hold with the infinitesimal
gauge transformation d̆c associated with the boost acceleration vector field,

aµ
c ≡ ξa£ aµ

b − ξb£ aµ
a . (44)

Let us now consider that ξa and ξb are Killing–Milne or Killing–Cartan vec-
tor fields. Using Eqs. (13), (14) and (15), we can show that aµ

c = eν∇νbµ
c . This

means that the infinitesimal gauge transformation d̆c acting on fields q̆{bµ} is the
same as the infinitesimal gauge transformation d̆c acting on fields q̆{aµ}. The iden-
tity (41) thus implies that if ka and kb are Killing vector fields, their commutator
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kc = [ka,kb] is also a Killing vector field. Using Eqs. (4) and (42), it can be checked
that the boost velocity vector field bµ

c associated with kc is given by

bµ
c = eν∇ν [ka,kb]µ = eν∇νkµ

c , (45)

in accordance with Eq. (15).
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