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The interpretation of many astrophysical phenomena requires
the knowledge of nuclear properties which are not
experimentally accessible
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Nuclear energy density functional theory in a nut shell

tractable and consistent treatment of various nuclear systems

The nuclear energy density functional theory allows for a
from atomic nuclei to neutron stars. J

The energy of a lump of matter is expressed as (q = n, p)

E = [ [p(®): Voalr). 70(r).3a(). o(r)]

where pq(r), 74(r)... are functionals of ¢{¥(r) and (¥ (r)

(hq(r)—xq Bq(r) ) AR _ @ (e
Dg(r)  —hg(r) +2a) \S(r)) 7\l

oE oE 0E OE
hgy=-V-—V+ ——i—- Ay = —
q 57 + 5pq I5Jq V xo, q



Effective nuclear energy density functional

@ In principle, one can construct the nuclear functional from
realistic NN forces (i.e. fitted to experimental NN phase
shifts) using many-body methods

h2
&= M 7 (7n + 7p) + A(pn, pp) + B(pn, pp) ™ + B(pp, on)7p

+C(pn, pp)(Von)?+C(p, Pn)(Vop)>+D(pn, pp) (Vo) (Vop)

+ Coulomb, spin-orbit and pairing
Drut et al.,Prog.Part.Nucl.Phys.64(2010)120.

@ But this is a very difficult task so in practice, we use
phenomenological (generalized Skyrme) functionals
Bender et al.,Rev.Mod.Phys.75, 121 (2003).



Phenomenological corrections for atomic nuclei

For atomic nuclei, we add the following corrections not taken
into account in Skyrme functionals:

@ Wigner energy

2 2
Ew = Vw eXp{—/\<N_Z> }+V\§V\N—Z\exp{—<A> }
A Ay

@ rotational and vibrational spurious collective energy

Eoor = EG™{b tanh(c|dz1) + || exp{-1(152| - 59)%}}

In this way, these collective effects do not contaminate the
parameters of the functional. \




Construction of the functional

Experimental data :

@ 2149 atomic masses with Z,N > 8 from AME 2003

@ compressibility 230 < K, < 250 MeV

@ charge radius of 2°®Pb, R, = 5.501 + 0.001 fm

@ symmetry energy J = 30 MeV
N-body calculations with realistic forces

@ isoscalar effective mass M$/M = 0.8

@ equation of state of pure neutron matter

@ 1S, pairing gaps in symmetric and neutron matter

@ Landau parameters, stability against spurious spin and
spin-isospin instabilities

With these constraints, the functional is well suited for
astrophysical applications.



Empirical pairing energy density functionals

The pairing functional is generally parametrized as

1 _ )
Epir = 3 D V™ pn. ppl g
q=n,p

. pn + pp\
v 9[on, pp] = VJ, (1—nq (%) >

Drawbacks

@ not enough flexibility to fit realistic pairing gaps in infinite
nuclear matter and in finite nuclei (= isospin dependence)

@ the global fit to nuclear masses would be computationally
Very expensive




Microscopically deduced pairing functional

Assumptions :
@ v™[pn, pp] = v™9[pq] depends only on pq
Duguet, Phys. Rev. C 69 (2004) 054317.
@ isospin charge symmetry v = v™P = y7
@ V7[pq] is the locally the same as in infinite nuclear matter
with density pq

V7 [pq] = V™ [Aq(pq)] constructed so as to reproduce exactly a
given pairing gap Aq(pq) in infinite homogeneous matter by
solving directly the HFB equations

Chamel, Goriely, Pearson, Nucl. Phys.A812,72 (2008).



Pairing in nuclei and in nuclear matter

Inverting the HFB equations yields

-1
s 1o g2 (1 V2 [ ppaten Ve
V7[pg] = -8 (2Mg;> (/0 dg\/(guq)2+Aq(pq)2)

h2
IV

(37T2pq)2/3
Cutoff prescription: s.p. energy cutoff £5 above the Fermi level
This procedure provides a one-to-one correspondence

between the pairing strength in finite nuclei and the 1Sy pairing
gap in infinite nuclear matter.



Analytical expression of the pairing strength

In the “weak-coupling approximation” Agq < jiq and Agq < ep

- B 812 h? 3/2
V7lral = ~lg(pq) <2M§(Pq)>

o dalon () 1 (2)

A(x) = log(16x) + 2v/1 + x — 2log (1 + \/m> 4

Chamel, Phys. Rev. C 82, 014313 (2010)

@ exact fit of the given gap function Aq(pq)
@ no free parameters
@ automatic renormalization of the pairing strength with e,



Pairing gaps from contact interactions

The weak-coupling approximation can also be used to
determine the pairing gap of a Fermi gas interacting with a
contact force

2
A=2uexp| ——
g (g(u)vr’ég>

v is the chemical potential, g(x) is the density of states and v
is a regularized interaction

1 1 1
—ynr " ym
Viig VT V]
4
Vi =



Accuracy of the weak-coupling approximation

This approximation remains very accurate at low densities
because the s.p. density of states is not replaced by a constant

as usually done.

vm[MeV fm3]

symmetric nuclear matter
0
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« numerical integration
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+ numerical integration
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Chamel, Phys. Rev. C 82, 014313 (2010)
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Pairing in dilute neutron matter

At very low densities, the 15 Boon
.. . . ]
pairing gap is given by
@ 10F Bges 4
g -Emlz:cosh
A 2\ ex il T e L 25 |
" \e Hn &P 2Krann . e\eife‘se,”./ moj
0—7 0 T 5
(k)

Gorkov&Melik-Barkhudarov, Sov.

Phys. JETP. 13, 1018, (1961). Chang et al. Phys.Rev.A70,

043602 (2004).

. 87T2 h2 3/2
=Vl == (2M::(pn>>

N 14 8 ™ EA
n= iz 302 (i) ()




Pairing cutoff and experimental phase shifts
In the limit of vanishing density, the pairing strength

472 K2 3/2
s Ol= —— [
vl =0 == ()

should coincide with the bare force in the 1Sy channel.
A fit to the experimental 1Sy NN phase shifts yields

en ~ 7 — 8 MeV.
Esbensen et al., Phys. Rev. C 56, 3054 (1997).

On the other hand, a better mass fit
can be obtained with ey ~ 16 MeV
while convergence is achieved for

1 en 2 40 MeV.

ok ‘ i Goriely et al., Nucl.Phys.A773(2006),279.

0 10 £O 3‘0 40
s.p. cutoff [MeV]




Choice of the pairing gap

Fit the 1Sy pairing gap obtained with realistic NN potentials at
the BCS level

1S, pairing gaps in
neutron matter obtained
with Argonne V4
potential

L Il L Il L Il L Il L Il N L Il
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
p, Ifm]

@ An(pn) essentially independent of the NN potential
@ An(pn) completely determined by experimental 1Sq nn
phase shifts

Dean&Hjorth-Jensen,Rev.Mod.Phys.75(2003)607.



Neutron vs proton pairing

@ Because of possible charge symmetry breaking effects
proton and neutron pairing strengths may not be equal

v o] # vTP[p]

@ The neglect of polarization effects in odd nuclei  (equal
filling approximation) is corrected by “staggered” pairing

= we introduce renormalization factors fqjE (f: = 1 by definition)

V™ [on] = fa v [on]

VP [pp] = finW[Pp]



Neutron vs proton pairing

What comes out of the global mass fit?
@ neutron and proton pairing strengths are effectively equal
fo /fo =~ f5 /fs
@ the pairing strength is larger for odd than for even nuclei
fy > 1
q ~'q

o8}’

061

L , , s
This is consistent with the 2 o
analysis of Bertsch et al. go
Phys.Rev.C79(2009),034306 0.2t N
Vi00a=0 T e

0.0r
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1S, pairing gap in neutron matter

This new mass model yields a much more realistic gap than our
previous mass models!
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Neutron-matter equation of state

This mass model is in very good agreement with realistic
neutron-matter equations of state
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HFB-16 mass table

Results of the fit on the 2149 measured masses with Z,N > 8
from the 2003 Atomic Mass Evaluation

HFB-16 FRDM
o(M) vev; | 0.632 0.656
é(M) mev | -0.001  0.058
o(Mnr) [Mev] | 0.748 0.919
€(Mnr) (vev) | 0.161 0.047
o(Sn) (Mev | 0.500 0.399
€(Sn) (Mev | -0.012  -0.001
a(Qp) vev] | 0.559 0.498
€(Qp) IMev1 | 0.031 0.004
(Rc) fm | 0.0313 0.0545
é(R¢) fm; | -0.0149 -0.0366




Pairing predictions in nuclei

Ng = 50 shell gap as function of Z for mass model HFB-16.

e e}

Shell gap [MeV]

NO'—‘I\JL»JAUIO\\]
T

Chamel, Goriely, Pearson, Nucl. Phys.A812,72 (2008)



Pairing predictions in nuclei

Ng = 82 shell gap as function of Z for mass model HFB-16.

7

Shell gap [MeV]
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Chamel, Goriely, Pearson, Nucl. Phys.A812,72 (2008)



Pairing predictions in nuclei

No = 126 shell gap as function of Z for mass model HFB-16.
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Chamel, Goriely, Pearson, Nucl. Phys.A812,72 (2008)



A[MeV]

HFB-17 mass model: microscopic pairing gaps
including medium polarization effects

Fit the 1Sy pairing gaps of both neutron matter and symmetric
nuclear matter obtained from Brueckner calculations taking
into account medium polarization effects

Neutron matter Symmetric nuclear matter
B 4.5 ]
4 ]
] 3.5 -
i %‘ 3 i
52.5 -
] Q2 ]
q 1.5 ]
. l N
1 0.5} e n
% 002 0.04 0.06 0.08 01 0.2 0.4 016 =504 008 012 01 02 Ui 0%

OO

pIfm’] plfm
Cao et al.,Phys.Rev.C74,064301(2006).



New expression of the pairing strength

@ the pairing strength is allowed to depend on both p, and pp

V™% pn, pp] = V" Aq(pn, pp)]

@ Aq(pn, pp) is interpolated between that of symmetric matter
(SM) and pure neutron matter (NM)

Aq(pn, pp) = Asm(p)(L —|n|) £ ANM(Pq)n%

_ Pn—Pp

’]7_
Pn + Pp

@ Mg = M to be consistent with the neglect of self-energy
effects on the gap

Goriely, Chamel, Pearson, PRL102,152503 (2009).
Goriely, Chamel, Pearson, Eur.Phys.J.A42(2009),547.



Density dependence of the pairing strength
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Isospin dependence of the pairing strength

800

700- :
600
500

.

400
300

2001 0.16 =
100+ =

R O T S (RO R RN URN S RE B
00 01 02 03 04 0,.75 06 07 08 09 1




HFB-17 mass table

Results of the fit on the 2149 measured masses with Z,N > 8
from the 2003 Atomic Mass Evaluation

HFB-16 HFB-17
(2149 M) | 0.632  0.581
é2149M) | -0.001  -0.019
o(Mnr) 0.748  0.729
é(Mnyr) 0.161  0.119
o(Sn) 0.500  0.506
&(Sn) -0.012  -0.010
(Q3) 0.559  0.583
é(Qp) 0.031  0.022
(Re) 0.0313  0.0300
éRe) -0.0149 -0.0114
6(2°8Pb) 0.15 0.15

€

q
m

Q




Predictions to newly measured atomic masses

HFB mass models were fitted to the 2003 Atomic Mass
Evaluation.

The predictions of these models are in good agreement
with new mass measurements

HFB-16 HFB-17
o(434M) | 0.484  0.363
434 M) | -0.136  -0.092
o(142M) | 0516  0.548
Z142M) | -0.070  0.172

Litvinov et al., Nucl.Phys.A756, 3(2005)

http://research.jyu.fi/igisol/JYFLTRAP_masses/ gs_masses.txt



Nuclear masses: HFB-16 vs HFB-17

Differences between the HFB-16 and HFB-17 mass predictions
as a function N for all 8 < Z < 110 nuclei lying between the

proton and neutron drip lines.

M(HFB-16)-M(HFB-17)

AM [MeV]

0 50 100 150 200 250



Ferromagnetic instability

Unlike microscopic calculations, conventional Skyrme
functionals predict a ferromagnetic transition in nuclear matter
sometimes leading to a ferromagnetic collapse of neutron stars.

o
=

o
w

o
N

proton fraction X, = pp/ p

-300F |— BSk17: no polarization 4

BSk17: polarization allowed
01 -400F | — SLy4: no polarization 4
500 L= SLy4: polarization allowed ]

- L L L L L L L L L
0% : 03 04 05 { 600001 02 03 04 05 06 07 08 09 1

p, (fm) plfm3

Margueron et al., Chamel et al.,
J.Phys.G36(2009),125102. Phys.Rev.C80(2009),065804.



Spin and spin-isospin instabilities
Skyrme functional in polarized homogeneous nuclear matter
52;’3', = u”p°'+C$sz+CS(sn —8p)?+CJsT+C/l (sp—Sp)(Ta—Tp)

Spurious spin and spin-isospin instabilities arise from the Cg
and C] terms in the Skyrme functional.

In symmetric nuclear matter, the
ferromagnetic stability is governed by
the Landau parameter

Go = 2Np(Cj + Cgké).

. | I | I | I | | |
40 01 02 03 04 05 06 07 08 09 1

plim?



Spin stability in nuclear matter (partially) restored

The spurious ferromagnetic instability can be removed by
including spin density dependent terms in the functional

In the framework of effective Skyrme forces, this can be
achieved by adding new terms of the form (ps = sn + Sp,
Pst = Sn — Sp)

1
6B (L +x3Po)ps(r)o(ry)

1
+gt§t(1 + X5'Po) pst (1) 75 (ri)

Margueron et al., J.Phys.G36(2009),125102.



Spin stability in nuclear matter (partially) restored

The spin-dependent terms not only remove the ferromagnetic
instability but also slightly improve the mass fit (¢ = 0.575 MeV)
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Margueron et al., J.Phys.G36(2009),125103.



Ferromagnetic transition at finite polarization

Problem: the new term removes the instability around
6s = (p' — p;)/p = 0 but still predicts a ferromagnetic transition
at finite [og| > 0

155 Bg17 T Bski7st

0,0) (MeV)

E/A®p) - EIAG

Margueron et al., J.Phys.G36(2009),125103.



Spin stability in symmetric nuclear matter restored

The ferromagnetic instability can be completely removed by
including the density-dependent term in the Skyrme force

1
ts(L +XsPg) 15Py-p(r)” 3(ri) Py

Problem: this new term will also change the nuclear properties
at low densities! Introduce another force of the form

; ta(1+XaPo) 7 {p., p(r)’ 5(fij)+5(fij)ﬂ(f)ﬁpuz}

The t; and ts terms exactly cancel in unpolarized nuclear
matter (for any isospin asymmetry) provided

t4(1 — X4) = —3ts5(1 + Xs5), X4(5 + 4x5) = —(4 + 5xs)
Chamel, Goriely, Pearson, Phys.Rev.C80(2009),065804.



Spin stability in asymmetric nuclear matter restored

With t4 and ts terms, the ferromagnetic instability is completely
removed not only in symmetric nuclear matter but also in
neutron matter for any spin polarization.
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We have checked that no instabilities arise in neutron stars at
any densities.
Chamel, Goriely, Pearson, Phys.Rev.C80(2009),065804.



HFB-18 mass model

Results of the fit on the 2149 measured masses with Z,N > 8

HFB-18 HFB-17
) [MeV] 0.585 0.581
) [MeV] 0.007 -0.019
o(Mpr) (Mev] | 0.758 0.729
é(Mnr) Mev] | 0172  0.119
(Sn) Mev] 0.487 0.506
(Sn) Mev] -0.012 -0.010
) Mev] | 0.561 0.583
€(Qg) Mev] 0.025 0.022
o(R¢) [fm] 0.0274 0.0300
€(Re) ffm] 0.0016 -0.0114
6(°%8Pb) [fm) | 0.15 0.15

= HFB-18 yields almost identical results as HFB-17 for nuclei



AE/A[MeV]

Spin-isospin instabilities

Although HFB-18 yields stable neutron-star matter, it still
predicts spurious spin-isospin instabilities in symmetric matter. J

All instabilities (at any temperature and degree of polarization)
can be removed by setting CtT = 0, which means dropping J?
terms due to gauge invariance.

Difference between the energy per
particle in fully polarized neutron
matter and in unpolarized neutron
matter with (dashed line) and without
(solid line) C{ terms.

-200F ) Chamel&Goriely, Phys.Rev.C82, 045804

TS _BSK17
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AM [MeV]

AM [MeV]

Impact of the J2 terms
Dropping the J? terms and their associated time-odd parts
@ removes spin and spin-isospin instabilities atany T > 0
@ prevents an anomalous behavior of the entropy

@ improves the values of Landau parameters (especially Gy)
and the sum rules.

Warning:

Adding or removing a posteriori the J2 terms
without refitting the functional can induce
large errors!

Chamel & Goriely, Phys.Rev.C82, 045804 (2010)
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Landau parameters and the J? terms

Landau parameters for selected Skyrme forces which were
fitted without the J? terms. Values in parenthesis were obtained

by setting C = 0.

Go Gg G
SGll 0.01 (0.62) | 0.51(0.93) | -0.07 (1.19)
SLy4 1.11 (1.39) | -0.13 (0.90) | 0.11 (1.27)
Skil -8.74 (1.09) | 3.17 (0.90) | -5.57 (1.10)
Ski2 -1.18 (1.35) | 0.77 (0.90) | -1.08 (1.24)
Ski3 0.57 (1.90) | 0.20(0.85) | -0.19 (1.35)
Skl4 -2.81 (1.77) | 1.38 (0.88) | -2.03 (1.40)
Ski5 0.28 (1.79) | 0.30(0.85) | -0.31 (1.30)
SkO -4.08 (0.48) | 1.61 (0.98) | -3.17 (0.97)
LNS 0.83(0.32) | 0.14 (0.92) | 0.59 (0.91)

Microscopic 0.83 1.22 0.77




Landau sum rules and the J? terms

Landau parameters must obey the sum rules

F F/
S =
! Zl+Fe/(2€+l)+1—|—Fé/(2€+l)

n Gy n G; _
1+Gy/(20+1)  1+G,/(2(+1)

Fi
21+Fe/ (2¢+1) T1+F;/(20+1)

G/
il 19 i

Sir6, /iy Y1 e e

=0



Landau sum rules and the J? terms

Landau sum rules for selected Skyrme forces which were fitted
without the J? terms. Values in parenthesis were obtained by
setting C! = 0.

S S
SGIl | 0.97 (0.61) | 1.13 (-0.51)
SLy4 | -0.31 (-0.65) | 1.52 (0.85)
Ski1 | -6.71 (-0.59) | -89.2 (0.86)
SKI2 | 6.87 (-0.71) | -20.7 (0.98)
SKI3 | -1.46 (-2.33) | 2.14 (1.84)
Ski4 | 1.01 (-1.23) | -11.3 (1.32)
SKI5 | -1.47 (-2.28) | 2.17 (1.77)
SkO | 3.21(1.07) | -13.7 (0.87)
LNS | 0.49 (0.63) | 3.53 (-0.04)




More about the J2 terms

On the other hand dropping the J? terms leads to

@ unrealistic effective masses in polarized matter

o R
2Mg,  2M;

@ self-interaction errors.

Instabilities can be removed with the J? terms by adding
density-dependent terms in CJ and C{. But only for T = 0.
Chamel, Goriely, Pearson, Phys.Rev.C80(2009),065804.



Self-interactions

In the one-particle limit, the potential energy obtained from
phenomenological functionals may not vanish.

Considering the most general semi-local functional with all
possible bilinear terms up to 2nd order in the derivatives

Esy= Y Clot+ClmAp+Clpri +CT iV - &
t=0,1

1 5
+Ct ZJt ;w\]t nuv + CTrJ (Z Jtv##) ECEJ Z\]t,,uz/‘]t,u,u
v

wv

+Cs? + CPSsy - Asy + Cl'sy - Ty + Cli2 +CVlsy - V x

+C3(V -st)’ + Cfst - Fe



Removal of self-interactions

Requiring the cancellation of self-interactions leads to the
fundamental constraints

C{+Cl+C5+Ci=0
C§+C] +Cf +C] =4(C8 +C2* +Cs + Chs)
4(Cy5+CY%)+Cf+CL =0
C{+C]—2(C§ +C{)—(C§ +Ci)—4(Css+CPs) =0

Chamel, Phys. Rev. C 82, 061307(R) (2010).



Self-interaction errors

Self-interaction errors in the one-patrticle limit can contaminate
systems consisting of many particles. J

For instance, in polarized neutron matter the error in the energy
density caused by self-interactions is given by
0€Raum = (C§ +Cf +C§ +C)p?

If C§ + CJ + C§ + C; < 0, self-interactions would thus drive a
ferromagnetic collapse of neutron stars.



Neutron-matter equation of state at high densities
We have recently constructed a family of three different
generalized Skyrme functionals BSk19, BSk20 and BSk21
spanning the range of realistic neutron-matter equations of
state at high densities.
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Neutron-matter equation of state at low densities

All three functionals yield similar neutron-matter equations of
state at subsaturation densities consistent with microscopic
calculations using realistic NN interactions
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Nuclear-matter equation of state

Our functionals are in very good agreement with BHF
calculations not only in neutron matter but also in symmetric
nuclear matter.
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Constraints from heavy-ion collisions

Our functionals are consistent with the pressure of symmetric
nuclear matter inferred from Au+Au collisions

1000+
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[iny
?

35 4 45 5

| ' | ' | ' | '
044572 325 3
p/p,

Danielewicz et al., Science 298, 1592 (2002).



Internal constitution of neutron stars

The interior of a neutron star contains very different phases
of matter . A unified description of all regions of neutron stars is
therefore very challenging.

Pressure ionization  Neutronization  Newrondrip  Pasta phase Proton drip Uniform matter

10° 10° 10 10 density (g/em’)

] -
° 2 90 o 0000000 'T’i"

e o0 000 000000 ;
s @0 QOQOQO

4
) [
Envelope Outer crust Inner crust
iron atoms neutron rich nuclei, e nuclear clusters,
ne L 8 ;
Solid crust Mantle Outer core
body centered cubic nuclear pasta npe

Coulomb lattice

Chamel&Haensel, Living Reviews in Relativity 11 (2008), 10
http://relativity.livingreviews.org/Articles/Irr-2008-10/



Description of the outer crust of a neutron star

The interior of a neutron star is supposed to be made of “cold
catalyzed matter at the end point of thermonuclear
evolution” . Harrison, Thorne, Wakano, Wheeler (1965)

For each pressure P, minimize the Gibbs free energy per
nucleon g = (¢ + P)/n assuming a perfect crystal of fully
ionized atoms

e=nNM{AZ} +cec+eL

M{A,Z} is the mass of an ion (atomic nucleus)
e IS the energy density of the electron gas

e is the lattice energy density




Ground-state composition of the outer crust of a cold
non-accreting neutron star

Nuclear masses are the only microscopic input. J
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Pearson, Goriely and Chamel,Phys.Rev.C 83,065810(2011).



Ground-state composition of t
strongly magnetized n

he outer crust of a
eutron star

In a strong magnetic field, the electron motion perpendicular
to the field is quantized into Landau levels. J
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Description of neutron star crust beyond neutron drip

The equilibrium structure of the inner crust is determined with
the Extended Thomas-Fermi (up to 4th order)+Strutinsky
Integral method (ETFSI).

@ Pairing is expected to have a small impact on the
composition and is therefore neglected.
@ Nuclei are assumed to be spherical.

Onsi et al., Phys.Rev.C77,065805 (2008).

Advantages of ETFSI method
@ very fast approximation to the full Hartree-Fock method
@ avoids the difficulties related to boundary conditions but
include proton shell effects (neutron shell effects are
generally much smaller and can be omitted)
Chamel et al.,Phys.Rev.C75(2007),055806.




Ground-state composition of the inner crust
Results for BSk14

01 ‘ ‘ ‘ T T

np(fm3)[]z A

0.0003 |50 200
0.001 50 460
0.005 50 1140

0.01 40 1215
0.02 40 1485
0.03 40 1590
0.04 40 1610
0.05 20 800
0.06 20 780

Onsi, Dutta, Chatri, Goriely, Chamel and Pearson,
Phys.Rev.C77,065805 (2008).

With BSk19, BSk20 and BSk21, only Z = 40 is found.



Unified equation of state of neutron stars

All regions of neutron stars can be described using the same
functional (n, p, e, © matter in the core).
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Ncaus (fm_3) Mmax/ Mo R (KM)  Nmax (fm_3)
BSk19 1.45 1.86 (1.84) 9.13 1.45
BSk20 0.98 2.14 (2.20) 10.6 0.98
BSk21 0.99 2.28 (2.3) 11.0 0.97




