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Outline

1 Atomic mass models based on Skyrme nuclear energy
density functionals

⊲ pairing
⊲ spin-isospin instabilities
⊲ self-interactions
⊲ neutron-matter stiffness

2 Applications of Skyrme functionals to neutron stars



Why do we need new Skyrme functionals ?

The interpretation of many astrophysical phenomena requires
the knowledge of nuclear properties which are not
experimentally accessible and won’t be measured in a near
future



Effective nuclear energy density functional

In principle, one can construct the nuclear functional
from realistic NN forces (i.e. fitted to experimental NN
phase shifts) using many-body methods

E =
~

2

2M
(τn + τp) + A(ρn, ρp) + B(ρn, ρp)τn + B(ρp, ρn)τp

+C(ρn, ρp)(∇ρn)
2+C(ρp, ρn)(∇ρp)

2+D(ρn, ρp)(∇ρn)·(∇ρp)

+ Coulomb, spin-orbit and pairing
Drut,Furnstahl and Platter,Prog.Part.Nucl.Phys.64(2010)120.

But this is a very difficult task so in practice, we
construct phenomenological (Skyrme) functionals
Bender,Heenen and Reinhard,Rev.Mod.Phys.75, 121 (2003).



Why not using existing Skyrme functionals?

Most of existing Skyrme functionals are not suitable for
astrophysics.

They were adjusted to a few selected nuclei (mostly in the
stability valley)
→ not suited for investigating stellar nucleosynthesis.

They were not fitted to the neutron-matter EoS
→ not suited for neutron-star studies.

It is difficult to get physical insight on how to optimize the
functional because each one was constructed using a different
fitting procedure.



Construction of the functional

Experimental data :

2149 atomic masses with Z ,N ≥ 8 from 2003 AME

compressibility 230 ≤ Kv ≤ 250 MeV

charge radius of 208Pb, Rc = 5.501 ± 0.001 fm

symmetry energy J = 30 MeV

N-body calculations with realistic forces :

isoscalar effective mass M∗
s/M = 0.8

equation of state of pure neutron matter
1S0 pairing gaps in symmetric and neutron matter

Landau parameters, stability against spurious spin and
spin-isospin instabilities



Phenomenological corrections for atomic nuclei

For atomic nuclei, we add the following corrections

Wigner energy

EW = VW exp

{

−λ

(

N − Z
A

)2}

+V ′
W |N−Z | exp

{

−
(

A
A0

)2}

VW ∼ −2 MeV, V ′
W ∼ 1 MeV, λ ∼ 300 MeV, A0 ∼ 20

rotational and vibrational spurious collective energy

Ecoll = Ecrank
rot

{

b tanh(c|β2|) + d |β2| exp{−l(|β2| − β0
2)

2}
}

In this way, these collective effects do not contaminate the
parameters of the functional.



Pairing functional



Local pairing energy density functionals
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The pairing EDF is very poorly
constrained by fitting pairing
gaps in nuclei. Other
observables are required to
pinpoint the density and isospin
dependence of the pairing
strength.
Chamel, Goriely, Pearson, Nucl.
Phys.A812,72 (2008).

Instead, the pairing EDF is assumed to be locally the same as
in homogeneous matter.
Garrido et al.,Phys.Rev.C60,064312(1999).
Margueron,Sagawa&Hagino,Phys.Rev.C77,054309(2008).



Empirical pairing energy density functionals
The pairing functional is generally parametrized as

Epair =
1
4

∑

q=n,p

vπq[ρn, ρp]ρ̃
2
q

vπq[ρn, ρp] = VΛ
πq

(

1 − ηq

(

ρn + ρp

ρ0

)αq
)

This functional has to be supplemented with a cutoff
prescription.

Drawbacks
not enough flexibility to fit realistic pairing gaps in infinite
nuclear matter and in finite nuclei (⇒ isospin dependence)

the global fit to nuclear masses would be computationally
very expensive



Pairing in nuclei and in nuclear matter

vπq[ρn, ρp] = vπq[∆q(ρn, ρp)] constructed so as to reproduce
exactly a realistic gap ∆q(ρn, ρp) in homogeneous matter

Inverting the HFB equations in homogeneous matter yields

vπq = −8π2
(

~
2

2M∗
q

)3/2




∫

Λ

√
εdε

√

(ε− µq)2 +∆q(ρn, ρp)2





−1

Chamel, Goriely, Pearson, Nucl. Phys.A812,72 (2008).

one-to-one correspondence between pairing in nuclei
and nuclear matter

no free parameters

automatic renormalization of the pairing strength with εΛ



Analytical expression of the pairing strength

Integrating the gap equation can be numerically costly for
global mass fits. But in the “weak-coupling approximation”
∆q ≪ µq and ∆q ≪ εΛ

vπq ≃ − 8π2

√
µq

(

~
2

2M∗
q

)3/2 [

2 log
(

2µq

∆q

)

+ Λ

(

εΛ
µq

)]−1

Λ(x) = log(16x) + 2
√

1 + x − 2 log
(

1 +
√

1 + x
)

− 4

s.p. energy cutoff εΛ above the Fermi level
Chamel, Phys. Rev. C 82, 014313 (2010)

This expression is as easy to numerically implement as
empirical functionals



Accuracy of the weak-coupling approximation

This approximation remains very accurate at low densities
because the s.p. density of states is not replaced by a constant
as in the usual “weak-coupling approximation”.

symmetric nuclear matter
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Chamel, Phys. Rev. C 82, 014313 (2010)



Accuracy of the weak-coupling approximation

This approximation remains very accurate at low densities
because the s.p. density of states is not replaced by a constant
as in the usual “weak-coupling approximation”.

symmetric nuclear matter
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Pairing cutoff and experimental phase shifts
In the limit of vanishing density, the pairing strength

vπq[ρ → 0] = − 4π2

√
εΛ

(

~
2

2Mq

)3/2

should coincide with the bare force in the 1S0 channel.

A fit to the experimental 1S0 NN phase shifts yields
εΛ ∼ 7 − 8 MeV.
Esbensen et al., Phys. Rev. C 56, 3054 (1997).
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On the other hand, a better mass fit
can be obtained with εΛ ∼ 16 MeV
Goriely et al., Nucl.Phys.A773(2006),279.
Chamel et al., arXiv:1204.2076



Choice of the pairing gap

Fit the 1S0 pairing gap obtained with realistic NN potentials at
the BCS level
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1S0 pairing gaps in
neutron matter obtained
with Argonne V14
potential

∆n(ρn) essentially independent of the NN potential

∆n(ρn) completely determined by experimental 1S0 nn
phase shifts

Dean&Hjorth-Jensen,Rev.Mod.Phys.75(2003)607.



Other contributions to pairing

In order to take into account

Coulomb and charge symmetry breaking effects

polarization effects in odd nuclei (we use the equal filling
approximation)

coupling to surface vibrations

we introduce renormalization factors f±q (f+n ≡ 1 by definition)

vπ n −→ f±n vπ n

vπ p −→ f±p vπ p

Typically f±q ≃ 1 − 1.2



HFB-16 mass table

Results of the fit on the 2149 measured masses with Z ,N ≥ 8
from the 2003 Atomic Mass Evaluation

HFB-16 FRDM
σ(M) [MeV] 0.632 0.656
ǭ(M) [MeV] -0.001 0.058
σ(Mnr ) [MeV] 0.748 0.919
ǭ(Mnr ) [MeV] 0.161 0.047
σ(Sn) [MeV] 0.500 0.399
ǭ(Sn) [MeV] -0.012 -0.001
σ(Qβ) [MeV] 0.559 0.498
ǭ(Qβ) [MeV] 0.031 0.004
σ(Rc) [fm] 0.0313 0.0545
ǭ(Rc) [fm] -0.0149 -0.0366

Chamel, Goriely, Pearson, Nucl. Phys.A812,72 (2008).



HFB-17 mass model: microscopic pairing gaps
including medium polarization effects

Fit the 1S0 pairing gaps of both neutron matter and symmetric
nuclear matter obtained from Brueckner calculations taking
into account medium polarization effects

Neutron matter
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Cao et al.,Phys.Rev.C74,064301(2006).



HFB-17 mass table
Results of the fit on the 2149 measured masses with Z ,N ≥ 8
from the 2003 Atomic Mass Evaluation

HFB-16 HFB-17
σ(2149 M) 0.632 0.581
ǭ(2149 M) -0.001 -0.019
σ(Mnr ) 0.748 0.729
ǭ(Mnr ) 0.161 0.119
σ(Sn) 0.500 0.506
ǭ(Sn) -0.012 -0.010
σ(Qβ) 0.559 0.583
ǭ(Qβ) 0.031 0.022
σ(Rc) 0.0313 0.0300
ǭ(Rc) -0.0149 -0.0114

θ(208Pb) 0.15 0.15

Goriely, Chamel, Pearson, PRL102,152503 (2009).



Predictions of HFB vs newly measured atomic masses

HFB mass models were fitted to the 2003 Atomic Mass
Evaluation. How reliable are these models?

The predictions of these models are in good agreement
with new mass measurements

HFB-16 HFB-17
σ(434 M) 0.484 0.363
ǭ(434 M) -0.136 -0.092
σ(142 M) 0.516 0.548
ǭ(142 M) -0.070 0.172

Litvinov et al., Nucl.Phys.A756, 3(2005)

http://research.jyu.fi/igisol/JYFLTRAP_masses/ gs_masses.txt



Spin-isospin instabilities



Ferromagnetic instability

Unlike microscopic calculations, conventional Skyrme
functionals predict a ferromagnetic transition in nuclear matter
sometimes leading to a ferromagnetic collapse of neutron stars.
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SLy4: polarization allowed

Chamel et al.,
Phys.Rev.C80(2009),065804.



Spin stability in symmetric nuclear matter restored
The ferromagnetic instability can be completely removed by
including the density-dependent term in the Skyrme force

t5(1 + x5Pσ)
1
~2pppij .ρ(rrr)

β δ(rrr ij)pppij

Problem: this new term will also change the nuclear properties
at low densities! Introduce another force of the form

1
2

t4(1 + x4Pσ)
1
~2

{

p2
ij ρ(rrr)

β δ(rrr ij) + δ(rrr ij) ρ(rrr)
β p2

ij

}

The t4 and t5 terms exactly cancel in unpolarized nuclear
matter (for any isospin asymmetry) provided

t4(1 − x4) = −3t5(1 + x5), x4(5 + 4x5) = −(4 + 5x5)

Chamel, Goriely, Pearson, Phys.Rev.C80(2009),065804.



Spin stability in asymmetric nuclear matter restored

With t4 and t5 terms, the ferromagnetic instability is completely
removed not only in symmetric nuclear matter but also in
neutron matter for any spin polarization.
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We have checked that no instabilities arise in neutron stars at
any densities.
Chamel, Goriely, Pearson, Phys.Rev.C80(2009),065804.



HFB-18 mass model
Results of the fit on the 2149 measured masses with Z ,N ≥ 8

HFB-18 HFB-17
σ(M) [MeV] 0.585 0.581
ǭ(M) [MeV] 0.007 -0.019
σ(Mnr ) [MeV] 0.758 0.729
ǭ(Mnr ) [MeV] 0.172 0.119
σ(Sn) [MeV] 0.487 0.506
ǭ(Sn) [MeV] -0.012 -0.010
σ(Qβ) [MeV] 0.561 0.583
ǭ(Qβ) [MeV] 0.025 0.022
σ(Rc) [fm] 0.0274 0.0300
ǭ(Rc) [fm] 0.0016 -0.0114

θ(208Pb) [fm] 0.15 0.15

HFB-18 yields almost identical results as HFB-17 for nuclei



Spin and spin-isospin instabilities

Although HFB-18 yields stable neutron-star matter, it still
predicts spurious spin-isospin instabilities in symmetric matter.

Spurious spin and spin-isospin instabilities arise from the CT
0

and CT
1 terms in the Skyrme functional:

Epol
Sky = Eunpol

Sky +Cs
0sss2+Cs

1(snsnsn−spspsp)
2+CT

0 sss·TTT+CT
1 (snsnsn−spspsp)·(TnTnTn−TpTpTp)

with sq = ρq↑ − ρq↓ and Tq = τq↑ − τq↓.
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Spin-isospin instabilities

Setting CT
t > 0 remove spin-isospin instabilities but can

lead to instabilities in nuclei.

All instabilities (at any temperature and degree of
polarization) can be removed by setting CT

t = 0, which
means dropping J2 terms due to gauge invariance.
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Chamel&Goriely, Phys.Rev.C82, 045804
(2010)



Landau parameters and the J2 terms

Landau parameters for selected Skyrme forces which were
fitted without the J2 terms. Values in parenthesis were obtained
by setting CT

t = 0.

G0 G′
0 GNeuM

0
SGII 0.01 (0.62) 0.51 (0.93) -0.07 (1.19)
SLy4 1.11 (1.39) -0.13 (0.90) 0.11 (1.27)
SkI1 -8.74 (1.09) 3.17 (0.90) -5.57 (1.10)
SkI2 -1.18 (1.35) 0.77 (0.90) -1.08 (1.24)
SkI3 0.57 (1.90) 0.20 (0.85) -0.19 (1.35)
SkI4 -2.81 (1.77) 1.38 (0.88) -2.03 (1.40)
SkI5 0.28 (1.79) 0.30 (0.85) -0.31 (1.30)
SkO -4.08 (0.48) 1.61 (0.98) -3.17 (0.97)
LNS 0.83 (0.32) 0.14 (0.92) 0.59 (0.91)

Microscopic 0.83 1.22 0.77



Impact of the J2 terms
Dropping the J2 terms and their associated time-odd parts

removes spin and spin-isospin instabilities at any T ≥ 0

prevents an anomalous behavior of the entropy

improves the values of Landau parameters (especially G′
0)

and the sum rules.

Warning:
Adding or removing a posteriori the J2 terms
without refitting the functional can induce
large errors!
Chamel & Goriely, Phys.Rev.C82, 045804 (2010)



More about the J2 terms

On the other hand dropping the J2 terms leads to

unrealistic effective masses in polarized matter

~
2

2M∗
qσ

=
~

2

2M∗
q
±
[

s(CT
0 − CT

1 ) + 2sqCT
1

]

⇒ M⋆
q↑ = M∗

q↓ = M∗
q

self-interaction errors.

Instabilities can be removed with the J2 terms by adding
density-dependent terms in CT

0 and CT
1 (t4 and t5 terms). But

only for zero temperature.
Chamel, Goriely, Pearson, Phys.Rev.C80(2009),065804.



Self-interactions



Self-interactions
In the one-particle limit, the potential energy obtained from
phenomenological functionals may not vanish.

Considering the most general semi-local functional with all
possible bilinear terms up to 2nd order in the derivatives

ESky =
∑

t=0,1

Cρ
t ρ

2
t + C∆ρ

t ρt∆ρt + Cτ
t ρtτt + C∇J

t ρt∇ · JtJtJt

+CJ
t

∑

µ,ν

Jt ,µνJt ,µν +
1
2

CTrJ
t

(

∑

µ

Jt ,µµ

)2

+
1
2

CJ2

t

∑

µ,ν

Jt ,µνJt ,νµ

+Cs
t s2

t + C∆s
t ststst ·∆ststst + CT

t ststst ·TtTtTt + C j
t j

2
t + C∇j

t ststst · ∇ × jtjtjt

+C∇s
t (∇∇∇ · ststst)

2 + CF
t ststst ·FtFtFt



Removal of self-interactions

Requiring the cancellation of self-interactions leads to the
fundamental constraints

Cρ
0 + Cρ

1 + Cs
0 + Cs

1 = 0

Cτ
0 + Cτ

1 + CT
0 + CT

1 = 4(C∆ρ
0 + C∆ρ

1 + C∆s
0 + C∆s

1 )

4(C∇s
0 + C∇s

1 ) + CF
0 + CF

1 = 0

Cτ
0 + Cτ

1 − 2(CT
0 + CT

1 )− (CF
0 + CF

1 )− 4(C∆s
0 + C∆s

1 ) = 0

Chamel, Phys. Rev. C 82, 061307(R) (2010).



Self-interaction errors

Self-interaction errors in the one-particle limit can contaminate
systems consisting of many particles.

For instance, in polarized neutron matter the error in the energy
density caused by self-interactions is given by

δEpol
NeuM = (Cρ

0 + Cρ
1 + Cs

0 + Cs
1)ρ

2

If Cρ
0 + Cρ

1 + Cs
0 + Cs

1 < 0, self-interactions would thus drive a
ferromagnetic collapse of neutron stars.

The use of effective forces prevent one-particle self-interaction
errors but not necessarily many-body self-interaction errors
(e.g. t3 term).



Neutron-matter stiffness



Neutron-matter equation of state at high densities
We have recently constructed a family of three different
generalized Skyrme functionals BSk19, BSk20 and BSk21
(with t4 and t5) spanning the range of realistic neutron-matter
equations of state at high densities.
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Neutron-matter equation of state at low densities

All three functionals yield similar neutron-matter equations of
state at subsaturation densities consistent with microscopic
calculations using realistic NN interactions

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
ρ [fm

-3
]

0

5

10

15

20

25

E
/A

 [
M

eV
]

BSk19
BSk20
BSk21
Friedman-Pandharipande (1981)

Pethick-Schwenk (1995)



Nuclear-matter equation of state

Our functionals (which were only fitted to neutron matter) are
also in excellent agreement with BHF calculations in symmetric
nuclear matter.



Constraints from heavy-ion collisions
Our functionals are consistent with the pressure of symmetric
nuclear matter inferred from Au+Au collisions
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Symmetry energy
Our functionals are consistent with chiral EFT calculations and
208Pb polarizability measurement.
Tews,Krueger,Hebeler,Schwenk,arXiv:1206.0025.
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Effective masses
Our functionals predict a qualitatively correct splitting of
effective masses (M∗

n > M∗
p in neutron-rich matter) in

agreement with giant resonances and many-body calculations
using realistic forces.

M
M∗

q
=

2ρq

ρ

M
M∗

s
+
(

1 − 2ρq

ρ

) M
M∗

v

BSk19 BSk20 BSk21 EBHF
M∗

s/M 0.80 0.80 0.80 0.825
M∗

v/M 0.61 0.65 0.71 0.727

BSk21 is also in good quantitative agreement with Extended
Brueckner Hartree-Fock (EBHF) calculations.
Cao et al.,Phys.Rev.C73,014313(2006).



HFB-19,HFB-20 and HFB-21 mass tables
Results of the fit on the 2149 measured masses with Z ,N ≥ 8
from the 2003 Atomic Mass Evaluation
http://www.astro.ulb.ac.be/bruslib/

HFB-19 HFB-20 HFB-21 HFB-18
σ(M) [MeV] 0.583 0.583 0.577 0.585
ǭ(M) [MeV] -0.038 0.021 -0.054 0.007
σ(Mnr ) [MeV] 0.803 0.790 0.762 0.758
ǭ(Mnr ) [MeV] 0.243 0.217 -0.086 0.172
σ(Sn) [MeV] 0.502 0.525 0.532 0.487
ǭ(Sn) [MeV] -0.015 -0.012 -0.009 -0.012
σ(Qβ) [MeV] 0.612 0.620 0.620 0.561
ǭ(Qβ) [MeV] 0.027 0.024 0.000 0.025
σ(Rc) [fm] 0.0283 0.0274 0.0270 0.0274
ǭ(Rc) [fm] -0.0032 0.0009 -0.0014 0.0016

θ(208Pb) [fm] 0.140 0.140 0.137 0.150

Goriely, Chamel, Pearson, Phys.Rev.C82,035804(2010).

http://www.astro.ulb.ac.be/bruslib/


Comparison with the latest experimental data

The latest experimental data from the 2011 AME favor HFB-21.
http://www-nds.iaea.org/amdc/

ǭ(M) [MeV] σ(M) [MeV]

HFB-21 -0.031 0.574
HFB-20 -0.010 0.595
HFB-19 0.051 0.593
HFB-18 0.026 0.582
HFB-17 0.0008 0.581
FRDM 0.062 0.645

http://www-nds.iaea.org/amdc/


Applications to neutron stars



Internal constitution of neutron stars

The EDF theory is well-suited for describing the very different
phases of matter found in the interior of neutron stars.

Chamel&Haensel, Living Reviews in Relativity 11 (2008), 10
http://relativity.livingreviews.org/Articles/lrr-2008-10/



Unified equation of state of a neutron star

The EDF theory allows for a unified treatment of all regions of a
neutron star.

outer crust (nuclei+relativistic electron gas)
BPS model with HFB mass table
Pearson, Goriely and Chamel,Phys.Rev.C 83,065810(2011).

inner crust (clusters+neutron gas+relativistic electron gas)
Extended Thomas-Fermi+proton shell correction
Pearson,Goriely,Chamel,Ducoin,Phys.Rev.C85,065803(2012).

core (neutrons+protons+leptons)



Composition of the outer crust of a neutron star

Sequence of equilibrium nuclides with increasing depth:
HFB-19 HFB-20 HFB-21

56Fe 56Fe 56Fe
62Ni 62Ni 62Ni
64Ni 64Ni 64Ni
66Ni 66Ni 66Ni
86Kr 86Kr 86Kr
84Se 84Se 84Se
82Ge 82Ge 82Ge
80Zn 80Zn 80Zn
82Zn 82Zn -

- - 79Cu
78Ni 78Ni

80Ni 80Ni 80Ni
126Ru 126Ru -
124Mo 124Mo 124Mo

- 122Mo -
122Zr 122Zr 122Zr
124Zr 124Zr -

- - 121Y
120Sr 120Sr 120Sr
122Sr 122Sr 122Sr
124Sr 124Sr 124Sr
126Sr 126Sr -

The first 8 nuclides are completely
determined by experimental atomic
masses.

Deeper in the crust the composition is more
model-dependent. Measurements of
neutron-rich nuclei are crucially needed.
Pearson,Goriely,Chamel,Phys.Rev.C83,065810.



Structure of the inner crust of a neutron star
With increasing density, the clusters keep essentially the same
size but become more and more dilute:

Crust-core transition properties

n̄cc (fm−3) Pcc (MeV fm−3)
BSk19 0.0885 0.428
BSk20 0.0854 0.365
BSk21 0.0809 0.268
SLy4 0.0798 0.361

0 5 10 15 20 25 30 35 40 45
r [fm]

0
0.04
0.08
0.12

0
0.04
0.08
0.12

0
0.04
0.08
0.12

0
0.04
0.08
0.12

0
0.04
0.08
0.12

0
0.04
0.08
0.12

n = 0.08

n = 0.06

n = 0.04

n = 0.02

n = 0.005

n n(r
),

 n
p(r

) 
[f

m
-3

]

n = 0.0003BSk21

Note that HFB-19-20-21 all predict a neutron-skin thickness of 0.14 in 208Pb.

The crust-core transition is found to be very smooth: the crust
dissolves continuously into a uniform mixture of neutrons,
protons and electrons



Unified equation of state of neutron stars

All regions of a neutron star are described using the same
functional.
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Neutron star observations rule out the softest of our EoS and
favor BSk21 since direct Urca should occur in some stars.
Chamel et al.,Phys.Rev.C84,062802(2012).



Summary

We have developed Skyrme functionals for HFB atomic mass
models and for neutron stars:

they give an excellent fit to essentially all experimental
mass data (σ . 0.6 MeV)

they give an excellent fit to other properties of finite nuclei
such as charge radii (σ . 0.03 fm)

they also reproduce various properties of homogeneous
nuclear matter (EoS, 1S0 pairing gaps, effective masses)

they do not contain spurious spin-isospin instabilities in
homogeneous nuclear matter

Both the latest experimental atomic mass data and
astrophysical observations favor HFB-21.


