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ABSTRACT

The recent discovery of long-period eccentric binaries hosting a He-white dwarf or a subdwarf star has been challenging binary-star
modeling. Based on accurate determinations of the stellar and orbital parameters for IP Eri, a K0 + He-WD system, we propose an
evolutionary path that is able to explain the observational properties of this system and, in particular, to account for its high eccentric-
ity (0.25). Our scenario invokes an enhanced-wind mass loss on the first red giant branch (RGB) in order to avoid mass transfer by
Roche-lobe overflow, where tides systematically circularize the orbit. We explore how the evolution of the orbital parameters depends
on the initial conditions and show that eccentricity can be preserved and even increased if the initial separation is large enough. The
low spin velocity of the K0 giant implies that accretion of angular momentum from a (tidally-enhanced) RGB wind should not be
efficient.
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1. Introduction

The recent discovery of several long-period binaries (P ∼ 103 d)
hosting a subdwarf (sdB) star (Østensen & Van Winckel 2011,
2012; Vos et al. 2012; Deca et al. 2012; Barlow et al. 2012, 2013)
or a He white dwarf (WD) like HR 1608 = 63 Eri (Landsman
et al. 1993; Vennes et al. 1998) or IP Eri studied here (Merle et al.
2014) have challenged our understanding of their formation.
These two classes of stars are closely related, since sdB stars
consist of He-burning cores surrounded by extremely thin H en-
velopes (Heber 1986), while He WDs are degenerate, nuclearly
extinct He cores.

The formation of sdB stars and He WDs require that the
progenitor star loses its envelope as it ascends the red giant
branch (RGB). The most likely scenario, if not the only one for
the He WDs, requires a binary companion. Among the 5 differ-
ent evolutionary channels proposed by Han et al. (2002, 2003)
for the formation of sdBs, the only one that leads to long-period
systems involves stable mass transfer on the RGB. To avoid
dynamical Roche lobe overflow (RLOF) and subsequent com-
mon envelope (CE) evolution, the initial system mass ratio must
be less than some critical value on the order of ∼1.2–1.5 (e.g.
Webbink 1988; Soberman et al. 1997). This scenario is likely to
produce circular systems with periods P <∼ 500 d (Podsiadlowski
et al. 2008) that may be too short to account for the thousand
days period of the previously mentioned objects. An alterna-
tive scenario has emerged from the binary population-synthesis
models of Nelemans (2010). Using the γ-prescription for the CE
efficiency (Nelemans & Tout 2005), which is based on the an-
gular momentum balance rather than the energy balance, the au-
thors showed that CE channels can produce systems with main-
sequence companions and periods on the order of years but
likely to be circular.

More recently, Clausen & Wade (2011) proposed a different
evolutionary path leading to eccentric, long-period sdB + main-
sequence (MS) binary systems, starting from hierarchical triple
systems whose inner binaries merge and form sdBs, while the
outer MS star had no part in the sdB formation. Thus, unlike sta-
ble RLOF- and CE-produced systems, which should have nearly
circular orbits, no limitations exist on the eccentricities of these
binaries other than a requirement that the periastron separation
of the outer binary not be too small. This results in eccentric
systems with final orbital periods on the order of 1000 d. The
application of this scenario to the formation of a long-period ec-
centric binary involving a He WD is more problematic, because
it requires the merger product of the inner binary to be a He WD,
i.e. with a mass below ∼0.45 M�.

Based on state-of-the-art binary-evolution calculations done
with BINSTAR, we present a consistent evolutionary channel to
explain the properties of systems like IP Eri involving a He WD
in a long-period eccentric orbit. The paper is organized as fol-
lows: in the next two sections we summarize the main physi-
cal ingredients of BINSTAR and properties of IP Eri. Then in
Sects. 4 and 5, we present the results of our calculations for
the RLOF and tidally-enhanced wind models and conclude in
Sect. 6.

2. The binary evolution code BINSTAR

The BINSTAR code (Siess et al. 2013; Davis et al. 2013;
Deschamps et al. 2013) used in this work is based on the stellar
evolution code STAREVOL (Siess 2006) and is specifically de-
signed to study low- and intermediate-mass binaries. The evolu-
tion of the orbital parameters (semi-major axis and eccentricity)
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is calculated simultaneously along side the internal structure and
rotation of the two stellar components.

The evolution of the orbital parameters is governed by the
conservation of the system’s angular momentum (hereafter AM,
JΣ), according to the relation

J̇Σ = J̇d + J̇g + J̇orb (1)

where J̇orb, J̇d and J̇g are the torques applied to the orbit, donor
and gainer star, respectively. The stellar torques that act on the
stellar spins account for the action of tides (synchronization) and
change in AM due to the accretion or loss of mass. Note that in
all the simulations, we consider solid-body rotation and assume
the initial stars to be (pseudo-)synchronized. The evolution of
the semi-major axis (a) is given by

ȧ
a
= 2

J̇orb

Jorb
− 2

(
Ṁd

Md
+

Ṁg

Mg

)
+

Ṁd + Ṁg

Md + Mg
+

2eė
1 − e2

, (2)

where J̇orb is evaluated from Eq. (1) and Ṁi= d,g corresponds to
the net1 mass change rate of star i. RLOF mass transfer rates are
computed according to the Kolb & Ritter (1990) prescription and
the Eggleton (1983) formulation for the Roche lobe radius (RL1)
is used.

Changes in the eccentricity (e) due to the tidal interaction
of each star (ėtide,i) are calculated from Zahn (1977, 1989) (for
details, see Siess et al. 2013, hereafter Paper I). However in an
eccentric orbit, the specific AM of the ejected material depends
on the star’s position along its orbit and is potentially able to
generate some eccentricity. Following Soker (2000)

ėwinds(ν) =

∣∣∣Ṁwind
g + Ṁwind

d

∣∣∣
(Md + Mg)

(e + cos ν), (3)

where ν is the true anomaly and Ṁwind
i the wind mass loss rate

from star i, assumed in these calculations to follow the Reimers
(1975) prescription. The total rate of change of the eccentricity
is given by

ė = ėwinds + ėtide,d + ėtide,g. (4)

The specific AM of the wind material ejected from the system is
assumed to be equal to the specific orbital AM of the star at its
position on the orbit, i.e.

J̇Σ =
∑
i=g,d

Ṁwind
i a2

iω =

(
Ṁwind

d

q
+ qṀwind

g

)
jorb, (5)

where ω is the orbital angular velocity, ai the distance of star i to
the center of mass of the system (a1 + a2 = a), q = Md/Mg the
mass ratio and jorb = Jorb/(Md + Mg) the specific orbital AM.

When the mass exchange rate depends on the orbital phase,
as is the case in an eccentric orbit for the RLOF mass transfer
rate and tidally enhanced stellar winds (see Sect. 4.2), averaged
quantities must be used in order to follow the secular evolution of
the system over millions of orbits. To achieve this goal, we use a
Gaussian quadrature integration scheme which involves the cal-
culation of the mass transfer properties at very specific locations
(i.e. at given true anomalies) along the orbit. Once the instanta-
neous Roche radius is known, at that orbital phase one can cal-
culate the tidal torques (ėtide,i) and the mass transfer rates (either
due to RLOF or tidally enhanced wind) from which the “local”

1 This includes contributions from mass accretion/loss via RLOF
and/or wind.

values of ėwinds and J̇i are derived. The mean quantities 〈Ṁi〉,
〈ėwinds〉 and 〈ȧ/a〉 are then simply calculated by summing the
weighted contribution of each variable at the specified points.
Technically, this resumes to calculating for X = {Ṁ, ė, ȧ}

〈X〉 = 1
P

∫ P

0
X(t) dt =

(1 − e2)3/2

π

∫ 2π

0

X(ν)
(1 + e cos ν)2

dν

≈ (1 − e2)3/2
N∑

i= 1

wi
X(νi)

(1 + e cos νi)2
,

where νi and wi are tabulated coefficients2.

3. Observational and evolutionary constraints

Merle et al. (2014) derive the first orbital solution for IP Eri
(=HD 18131 = EUVE J0254-053), a K0IV + DA WD sys-
tem with P = 1071.00 ± 0.07 d and e = 0.25 ± 0.01. An
analysis of the WD atmospheric lines by Burleigh et al. (1997)
and Vennes et al. (1998) yielded an effective temperature of
∼30 000 K and gravity log g ∼ 7.5. These values, combined
with structural models and a revised Hipparcos distance esti-
mate of ∼100+26

−7 pc, leads to a mass close to 0.4 ± 0.03 M�
for the hot companion, implying that the WD is made of He
and not of carbon-oxygen. The stellar metallicity of the K0 gi-
ant is close to solar with [Fe/H] ∼ 0.1, with an effective tem-
perature Teff = 4960 ± 100 K and log g = 3.3 ± 0.3. These
parameters indicate that the star is located at the base of the
RGB in the Hertzsprung-Russell diagram (HRD) and its initial
mass ranges between 1.2−1.3 <∼ Mgiant/M� <∼ 3. The low sys-
tem mass function ( f = 0.0036 M�) only sets an upper limit on
Mgiant < 4.26 M�. A detailed chemical analysis of the giant re-
veals no s-process enhancement, implying that the WD progeni-
tor avoided the asymptotic giant branch (AGB) phase, consistent
with its He composition. No sign of fast rotation was detected in
the giant with v sin i < 5 km s−1.

Given the mass of the He WD, its progenitor must have been
less massive than 3 M� initially, because stars of higher masses
leave the main sequence with a H-depleted core more massive
than the derived WD mass. We also inferred from single-star
calculations performed with STAREVOL, that the age of the
He WD on its cooling track is ≈107 yr.

Evolutionary timescales also impose some constraints on
the mass of the WD progenitor. If we consider the system to
be ∼5 Gyr old, compatible with its solar-like composition, this
imposes the mass-losing star to be at least ∼1.2−1.3 M�, so that
it can reach the RGB and start losing mass in that time interval.

Furthermore, the initial mass ratio must be close to unity so
that, by the time the He WD forms and reaches its observed po-
sition in the HRD, the companion star has evolved substantially
off the main sequence to comply with the observed values.

4. Stable RLOF channel

4.1. Circular systems

We start by investigating the stable RLOF channel, first for cir-
cular systems (Sect. 4.1) and then for eccentric ones (Sect. 4.2).
The key point in this approach is to start with a binary hav-
ing a mass ratio just above unity, so that when RLOF starts, q

2 See e.g.
http://en.wikipedia.org/wiki/Gaussian_quadrature

A57, page 2 of 7

http://en.wikipedia.org/wiki/Gaussian_quadrature


L. Siess et al.: The formation of long-period eccentric binaries with a helium white dwarf

Fig. 1. Evolution of the semi-major axis (top), mass-transfer rate (mid)
and period (bottom, in days) for the circular RLOF systems as a function
of the donor’s mass. The curves correspond to different initial orbital
periods: 30 (solid, black), 100 (red, dotted), 200 (green, short-dashed)
and 365 days (blue, long-dashed). The initial masses are 1.2 + 1.0 M�.

rapidly drops below unity ensuring stable mass transfer. The ini-
tial orbital period is chosen in such a way that the donor star
fills its Roche lobe on the RGB. A set of evolutionary tracks has
been computed for systems with initial masses M1 = 1.2 and
M2 = 1.0 M� and initial periods of 30, 100, 200 and 365 d.

As shown in Fig. 1, the final orbital periods range from
200 to 1400 d, covering the observed value. With increasing
initial periods, mass transfer starts at higher luminosities cor-
responding to larger core masses. As a consequence, the mass
of He WD increases from 0.34 M� to 0.44 M�. In all simu-
lations, the mass-transfer rate peaks around 10−2 M� yr−1, de-
creases once the mass ratio has been reversed and then stabilizes
around 10−8 M� yr−1. We note that the phase of rapid mass trans-
fer (Ṁ > 10−5 M� yr−1) occurs over a larger mass range if RLOF
starts later in the evolution. The reason for this behavior is be-
cause, as the star climbs the RGB, the energy demand from the
H-burning shell (HBS) increases. To compensate for the higher
radiative losses from the surface, H is burnt at a higher rate and
the core growth rate (ṀHBS) increases. Because the expansion
of the star is driven by the HBS, a higher ṀHBS leads to a larger
overfilling factor (R/RL1) and hence mass-transfer rate. When all
the envelope is removed, the star leaves the RGB and moves to
the blue as the hot He core is progressively exposed. Our simula-
tions can reproduce the observed period and WD mass of IP Eri
provided the system had an initial period of ≈300 days.

The evolution of the secondary component is not very sen-
sitive to the initial period. It lands on the main sequence with a
mass on the order of 1.6–1.7 M� when a conservative evolution
is considered. As described at the end of Sect. 5, some fine tun-
ing is required to match the position in the HR diagram for both
stars. It is also worth noticing that in this process, the accretion
of AM spins up the gainer close to its breakup velocity which is
incompatible with observations.

4.2. Eccentric systems

If we now consider a system with an initial eccentricity e = 0.3
and re-perform the previous calculations, we find that in all
cases, the orbit has circularized by the time RLOF starts. The
reason is that mass transfer begins when the star has already
evolved along the giant branch and possesses a deep convective
envelope. Convection is the most efficient mechanism for dissi-
pating the kinetic energy of the tidally-induced large-scale flows
(e.g. Zahn 2008). According to Zahn (1978), the circularization
timescale can be expressed as

1
τcirc
=

1
84q̃(1 + q̃) k2

( MR2

L

)1/3(R
a

)8

≈ 2
q̃(1 + q̃)

(R
a

)8

yr, (6)

where k2 is the apsidal motion constant and q̃ = Mi/M3−i,
the other quantities having their usual meanings. Inserting the
Roche lobe radius (RL1) formula of Paczyński (1971) in Eq. (6)
and assuming q ≈ 1 as required by our scenario, we find that
τcirc ≈ 4600( RL1

R )8 yr which is extremely short in comparison to
the evolutionary (Kelvin-Helmholtz) timescale along the RGB.
Therefore, as the star expands and progressively fills its Roche
lobe, the orbit circularizes before RLOF had even started. So,
within this paradigm, it is impossible to prevent the circulariza-
tion of the orbit, at least for the low- and intermediate-mass stars
that we consider.

5. The enhanced wind scenario

The only solution to form a He WD and preserve some eccentric-
ity is to remove mass from the giant while keeping it well inside
its Roche radius so that the tidal effects remain weak. One possi-
bility to meet these requirements is to boost the wind mass-loss
rate prior to RLOF as proposed by Tout & Eggleton (1988). In
their model, the authors advocate that tidal interactions and/or
magnetic activity are responsible for the stellar wind enhance-
ment and assume that the multiplying factor has the same de-
pendence on the radius and separation as the tidal torque applied
onto that star. This lead Tout & Eggleton (1988) to propose the
following expression for the mass-loss rate

Ṁwind
i = ṀReimers

i ×
{

1 + Bwind ×min
[( R

RL1

)6

,
1
26

]}
, (7)

where ṀReimers is the Reimers’ mass-loss rate and the constant
Bwind = 104 was found to match the properties of Z Her, a
RS CVn system with a mass ratio below unity.

The results of our new simulations including the tidally
enhanced wind are depicted in Fig. 2 (we use the same initial
conditions as in the previous section). Several points draw our
attention: first, this mechanism leads to smaller He WD masses
because, for a given initial period, the envelope is removed faster
(to prevent the radius from approaching RL1 too closely) which
in turn leaves less time for the H-burning shell to advance out-
ward. Second, the higher amount of mass lost by the system re-
duces the final separation compared to the previous (conserva-
tive) RLOF evolution. For example, in the RLOF calculation, the
one-year initial-period system leads to the formation of a 1400 d
period system with a 0.43 M� He WD. For the enhanced wind
prescription, we obtain a 0.36 M� He WD binary in a 850 d or-
bital period. This implies that in order to reproduce the observed
period of IP Eri, a larger initial separation must be selected.

However, the most interesting feature is the preservation and
even increase of the eccentricity in the long-period systems. We
remark that, if the initial separation is less than ∼200 d for our
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Fig. 2. Evolution of the eccentricity (top) and orbital period (bottom, in
days) for the enhanced-wind models as a function of the donor’s mass.
The curves correspond to different initial orbital periods: 30 (solid,
black), 100 (red, dotted), 200 (green, short-dashed) days, 1 (blue, long-
dashed), 1.5 (cyan, dot-short dashed) and 2 years (magenta, dot-long
dashed). The initial stellar masses are 1.2 + 1.0 M�.

1.2 + 1.0 M� system, the mass-loss rate enhancement occurs too
early, when Ṁwind

i is relatively low. As a consequence, the ec-
centricity pumping term (ėwinds) in Eq. (4) remains small, |ėtides|
dominates and the eccentricity globally decreases. Thus, there
exists a critical initial period above which ėwinds > |ėtides| and
eccentricity can be preserved but its analytical derivation is not
straightforward because of the dependence of the mass loss rate
on the eccentricity (via the determination of the Roche radius)
and the simplistic approach of Soker (2000), which assumes a
constant mass-loss rate independent of the orbital phase, cannot
be reiterated here.

However, the final eccentricity still remains lower than the
observed value. To improve the situation, we explored the pa-
rameter space, first varying the initial mass ratio and eccentricity.
The results are presented in Fig. 3 and show the absence of any
obvious relation between the initial and final eccentricities. In
particular, a system initially more eccentric will not necessarily
end up with a higher final eccentricity and the reason is because
quantities are averaged over an orbit. For a given initial period,
with increasing eccentricity, the stars get closer to each other at
periastron. On one hand, this contributes to further enhance the
mass-loss rate due to its strong dependence on the Roche ra-
dius (which depends on the instantaneous separation) and hence
ėwinds but on the other hand, the star spends a longer fraction of
its time at greater distances, where the wind is weak. The result
is that the mean wind mass-loss rate decreases with increasing
eccentricity, leading to less efficient eccentricity pumping and in
the end to a stronger circularization of the orbit. Due to the non-
linearity of these effects, this conclusion may, however, depend
on the initial configuration.

Given the uncertainties in the initial-system mass ratio, we
performed several simulations, starting with the same initial pe-
riod of 550 days and varying q. All mass-losing stars end up
with about the same WD mass between 0.37 and 0.43 M�. From
the curves depicted in Fig. 4, we see that increasing the donor’s
mass for a given companion mass leads to longer final period

Fig. 3. Evolution of the eccentricity a), orbital period b), wind mass
loss rate c) and ė contributions d) as a function of the donor’s mass
under various physical configurations. The initial period is the same
for all simulations and equal to 550 days. The three curves in panel a)
and b) starting at M = 1.5 M� show the evolution of a 1.5 + 1.0 M�
system for initial eccentricities equal to 0.5 (black, solid), 0.3 (blue,
dotted) and 0.2 (red, short-dashed). The evolution of a 1.2 + 1.0 M�
system with same initial eccentricities is also shown with the same line
coding but different colors. In the right panels, only the properties of
the 1.5 + 1.0 M� system are shown. The positive ė corresponds to the
pumping term, the negative part to the tidal one.

(green vs. blue curve) because in this nonconservative evolution,
a larger amount of mass has been removed from the system to
form the He WD (this response of the orbital parameters to sys-
temic mass loss is demonstrated in the appendix). If we now fix
the mass of the WD progenitor but increase that of the compan-
ion (cyan vs. red curve), the systems evolve toward shorter final
periods. In these configurations about the same mass is ejected
from the system but, in the binaries with the higher mass com-
panion, a much larger amount of AM will be taken away by the
wind because the specific AM of the ejected material (Eq. (5))
increases with increasing system mass (ω ∝ √

Md + Mg) and
decreasing mass ratio.

Finally, systems with similar mass ratios (red and black
curves) evolve along the same q vs. Porb trajectory as demon-
strated in the appendix (Eq. (A.6)). This is a consequence of our
prescription for the systemic AM loss rate (Eq. (5)) and of the
fact that the gainer is not accreting mass. As discussed previ-
ously, the final periods lengthen with increasing donor mass.

The final eccentricity (which in Fig. 4 always ends up being
too small with respect to IP Eri observed value) is dictated by
the competition between ėwinds and ėtides and, for a given initial
period, depends mostly on the donor’s initial mass because the
ė contributions are imposed by the mass-losing star (ėtide,d 	
ėtide,g and Ṁwind

d responsible for ėwinds). We also notice that sys-
tems with higher initial masses require larger initial separations
to avoid RLOF. Consequently, they end their evolution at much
longer periods that are incompatible with observations.

Among the various parameters influencing the final orbital
period, the amount of AM lost by the wind is an important one.
By default we assume that the wind carries away the orbital an-
gular momentum of the star at its position on the orbit (Eq. (5)).
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Fig. 4. Evolution of the wind-enhancement factor (top), eccentricity
(mid) and period (bottom) as a function of the mass ratio for the different
initial configurations specified in the graph. All systems have an initial
period of 550 d and an eccentricity e = 0.3. The arrow indicates the
current orbital period of IP Eri. Note the saturation of the mass-loss rate
in the 2.0+1.9 M� system (top panel).

In an alternative set of model calculations depicted in Fig. 5, we
use the prescription described by Eq. (37) of Siess et al. (2013):

J̇Σ = fΣ (Ṁwind
g + Ṁwind

d ) jorb, (8)

where fΣ is a free parameter encapsulating our ignorance of the
exact mode of AM ejection. With decreasing values of this pa-
rameter, the wind removes less AM from the system. Jorb is
consequently larger, the separation larger and the tidal torques
weaker. The system is thus able to keep a higher eccentricity
and the separation keeps increasing as a result of nonconserva-
tive evolution, but to an extent that is no longer compatible with
the observations (see for example the cases with fΣ = 0.3 or 1
in Fig. 5). If instead we set fΣ = 2.0, the period remains within
the observed value but because of the shorter separation, the ec-
centricity is substantially reduced. So this alternative prescrip-
tion for J̇Σ cannot at the same time increase the eccentricity and
maintain the period close to ∼103 d.

So far, we have neglected the possibility that a fraction of
the tidally-enhanced wind could be captured by the compan-
ion. In a first simulation, we used the classical Bondi-Hoyle
wind-accretion scheme where the default wind parameters of
Eq. (25) of Paper I are adapted to the slow (<∼20 km s−1) wind
of the giant (βw =

1
80 and αBH = 0.15 instead of 1

8 and 1.5
respectively as suggested by Hurley et al. (2002) for classical
Bondi-Hoyle accretion rates). Following Shapiro & Lightman
(1976) and Jeffries & Stevens (1996), we approximate the torque
exerted by the wind onto the gainer by

J̇wind
acc,g = fjacc

Ṁwind
acc r2

accω

2
, (9)

where fjacc is a free parameter set to 0.1 as suggested by Jeffries
& Stevens (1996). The gainer’s accretion radius is given by

racc =
2GMg

v2orb + v
2
w
, (10)

Fig. 5. Evolution of the surface spin velocity of the gainer as a func-
tion of its mass (top, with fjacc = 0.1) and of the eccentricity (mid) and
period (bottom) as a function of the donor’s mass under different phys-
ical assumptions as specified in the graph. The initial configuration is a
1.2 + 1.0 M� system, with an initial period of 550 d and an eccentricity
e = 0.3 (see text for details).

where v2orb = G(Md + Mg)/a is the orbital velocity and vw the
wind velocity set to a fraction βw of the star’s escape velocity.

Accounting for wind accretion does not significantly alter the
global picture because little AM is deposited on the gainer. The
main observable effect is an increase of the companion’s rotation
rate. For reasonable values of the parameters as used in this test
simulation, the gainer accelerates up to 20 km s−1, which is not
so far off the observed value. It is important to emphasize that the
enhanced wind scenario avoids the problem associated with the
critical rotation of the gainer star when mass is transferred via
RLOF (Packet 1981; Dervişoğlu et al. 2010; Deschamps et al.
2013).

As a final test, we also varied the wind parameter Bwind.
This parameter is badly constrained and is likely to depend
on the structure of the star and vary with time. Considering
these large uncertainties (including the ad hoc dependence of
Eq. (7) on R/RL1), we calculated a new model using the stan-
dard physics (i.e. J̇Σ given by Eq. (5) and no wind accretion) but
with Bwind = 2×104 (Fig. 5, red curve). As expected, because of
the stronger wind, the eccentricity-pumping mechanism is more
efficient leading to a final eccentricity of ∼0.23 in very good
agreement with the observed value for IP Eri. This doubling of
the wind mass-loss rate has little impact on the orbital period
which is very similar to our default case.

Finally, Fig. 6 depicts the temporal evolution of some key
observable parameters for the model calculation (initial masses
of 1.5 + 1.45 M�, initial period of 415 d, initial eccentricity
of 0.4, Bwind = 3.6 × 104, αBH = 0.1, βw =

1
80 , fjacc = 0.03

and Eq. (5) for J̇Σ) best reproducing the current values of the
system IP Eri. The agreement is remarkable considering that we
are able to fit at once 7 observational constraints. We note how-
ever that the mass of the He WD (0.35 M�) is slightly below the
value inferred from model atmosphere fitting of the WD spec-
trum. A better agreement could in principle be achieved if some
core overshooting is operating in the giant but one should also be
aware that the procedure used to determine the WD mass suffers
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its own limitations and uncertainties. Finally, the slow rotation
of the K0 giant can only be fitted if fjacc = 0.03 implying that
little AM must be accreted.

6. Discussion

The formation of a He WD requires a binary system in which the
evolution of one of the components is truncated before it reaches
the tip of the RGB. Three main evolutionary channels can lead to
a binary system hosting a He WD and a main sequence or giant
star:

1. unstable RLOF mass transfer. If the initial mass ratio exceeds
qcrit >∼ 1.2−1.5, the mass transfer is dynamical and the sys-
tem most likely enters a common-envelope phase where the
eccentricity is reduced to zero and the period is considerably
shortened;

2. RLOF mass transfer is stable because initially q < qcrit.
The system avoids a catastrophic evolution and ends up as
a long-period binary in a circular orbit;

3. the initially most massive star ejected its envelope due to
enhanced stellar winds and RLOF is avoided. If the period
is long enough, eccentricity is preserved or can even be
increased.

The properties of IP Eri, a system consisting of a giant K0 and a
He WD with a period of 1071 d and an eccentricity of 0.23, can
only be explained by the tidally-enhanced wind model, i.e. via
scenario 3 mentioned above. Our exploration of this evolution-
ary channel indicates that there is a critical period below which
eccentricity decrease due to tidal effects will always dominate
over the eccentricity pumping due to the wind mass loss. But
such a limit is difficult to determine without an extensive ex-
ploration of the parameter space. As presented in Sect. 3, this
scenario also imposes some constraints on the initial mass ratio
of IP Eri. It must not be too far above unity so that in the rela-
tively short time interval during which the envelope is stripped
and the WD cooled down, the initially lower-mass companion
star has left the main sequence and started to climb the RGB.
We also showed that (1) only stars less massive than 3 M� may
give birth to a He WD (see Sect. 3); and (2) at solar metallicity,
Md >∼ 1.2 M� for the He WD to form within 5 Gyr.

In contrast to the related Wind-Induced Rapidly-Rotating
(WIRRING) systems like 2RE J0357+283 (Jeffries & Stevens
1996), the slow angular velocity of the K0 giant in IP Eri in-
dicates that little angular momentum has been accreted in the
He-WD formation process ( fjacc = 0.03). The main reason for
this difference is that in their model, Jeffries & Stevens (1996)
consider the ejection of a massive AGB envelope and impose a
significantly higher wind mass-loss rate (>10−5 M� yr−1). They
also restrict their study to circular systems, assume a constant
AGB wind mass-loss rate and do not follow the evolution of the
structure of the stellar components which for our RGB is signif-
icant. Indeed, during the tidally-enhanced mass-loss phase, the
radius of the giant increases by more than a factor 4 (see Fig. 6),
reaching up to 40–60 R� before leaving the RGB. All these ef-
fects result in larger amounts of mass and AM being accreted by
the companion of the AGB star which is spun up to much higher
rotational velocities.

The tidally-enhanced wind model implies that a substantial
amount of mass must be removed from the system. This mass
may give rise to a large IR excess. However, by the time the
He WD is observed (some 107 yr after the end of the envelope
ejection phase for our 1.2+1.0 M� system), this material has long
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Fig. 6. Temporal evolution of some key observable parameters for the
model calculation (initial masses of 1.5 + 1.45 M�, initial period of
415 d, e = 0.4, Bwind = 3.6 × 104, αBH = 0.1, βw = 1

80 and fjacc = 0.03)
best reproducing the current values of the system IP Eri: the left panel
corresponds to gravity (log g) vs. Teff (the WD is depicted by the black
cross, and the K0 star by the red cross, including the inset). The circles
are proportional to the radius of the mass-losing star. The lower right
panel is eccentricity versus orbital period, and the upper right is spin ve-
locity of the giant versus orbital period. The hatched region corresponds
to the possible values according to observations, which only provide an
upper limit on the spin velocity.

since been dispersed and mixed with the interstellar medium,
making its detection difficult.

Scenarios 1 and 2 above most likely produce circular sys-
tems because of tidal effects acting before and during RLOF,
unless some eccentricity can be generated either via the inter-
action between a circumbinary disc and the orbit (Goldreich
& Tremaine 1979; Artymowicz & Lubow 1994; Dermine
et al. 2012) or because of asymmetric mass loss (Soker 2000;
Frankowski & Tylenda 2001).

The detection of He-WD + MS or giant binaries, and more
recently of sdBs, with long periods and high eccentricities, sup-
port the tidally-enhanced wind model which is otherwise often
advocated to explain the evolution of a handful of additional sys-
tems, including some RS CVn binaries, Algols and Barium stars
as reviewed by Eggleton & Tout (1989). However the source of
eccentricity may differ between these systems. For example the
presence of a circumbinary disc (Goldreich & Tremaine 1979;
Artymowicz & Lubow 1994; Dermine et al. 2012) could act in
place or in parallel to the asymmetric mass loss mechanism.

Clearly this tidally-enhanced wind model provides a simple
framework to reproduce the observed properties of IP Eri but
such studies need to be extended to different classes of objects,
in order to better constrain the parameters of our models and
understand the source of this puzzling eccentricity.
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Appendix A: Evolution of the period as function
of the mass ratio

In the framework of the tidally-enhanced stellar wind model, the
companion star accretes almost no matter and the rate of change
of the orbital AM is mainly due to the systemic AM loss rate
resulting from the giant’s wind. Under these circumstances, J̇Σ ≈
J̇orb and Eq. (2) simplifies to

ȧ
a
≈ 2

J̇Σ
Jorb
− 2

Ṁd

Md
+

Ṁd

M
· (A.1)

With q = Md/Mg and Ṁg = 0, Eq. (5) can be recast into

J̇Σ =
Ṁwind

d

q
jorb. (A.2)

Substituting Eq. (A.2) into Eq. (A.1) leads to

ȧ
a
= − Ṁd

M
· (A.3)

This last equation tells us that when systemic mass loss prevails
and has the usual form of Eq. (5), the orbital separation increases
independently of the mass ratio. Now using Kepler’s third law
along with Eq. (A.3), we can relate the change in period P to
that of the system’s mass

dln P
dt
=

3
2

dln a
dt
− 1

2
dln M

dt
= −2

Ṁd

M
= −2

dln M
dt

(A.4)

and with M = (1 + q)Mg, one finally obtains the relation

dln P = −2 dln(1 + q) (A.5)

which, after integration leads to

P = P0

(
1 + q
1 + q0

)−2

(A.6)

where P0 and q0 are the initial period and mass ratio. This rela-
tion explains why, when systemic mass loss dominates, the evo-
lution of the period only depends on that of the mass ratio.
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