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ABSTRACT

We provide a detailed description of a new stellar evolution code, BINSTAR, which has been developed to study interacting binaries.
Based on the stellar evolution code STAREVOL, it is specifically designed to study low- and intermediate-mass binaries. We describe
the state-of-the-art input physics, which includes treatments of tidal interactions, mass transfer and angular momentum exchange
within the system. A generalised Henyey method is used to solve simultaneously the stellar structure equations of each component
as well as the separation and eccentricity of the orbit. Test simulations for cases A and B mass transfer are presented and compared
with available models. The results of the evolution of Algol systems are in remarkable agreement with the calculations of the Vrije
Universiteit Brussel (VUB) group, thus validating our code. We also computed a large grid of models for various masses (2 ≤ M/M� ≤
20) and seven metallicities (Z = 0.0001, 0.001, 0.004, 0.008, 0.01, 0.02, 0.03) to provide a useful analytical parameterisation of the
tidal torque constant E2, which allows the determination of the circularisation and synchronisation timescales for stars with a radiative
envelope and convective core. The evolution of E2 during the main sequence shows noticeable differences compared to available
models. In particular, our new calculations indicate that the circularisation timescale is constant during core hydrogen burning. We
also show that E2 weakly depends on core overshooting but is substantially increased when the metallicity becomes lower.

Key words. binaries: general – stars: evolution – stars: interiors – accretion, accretion disks

1. Introduction

The study of binary stars is fundamental to many areas of as-
tronomy. Binary stars allow a precise determination of stellar
masses and a number of astrophysical phenomena (Type Ia su-
pernovae, novae, X-ray bursts and possibly gamma-ray bursts,
etc.) can only be explained as the result of binary evolution.
However, comprehensive and detailed stellar models of various
physical processes involved in binary-star evolution are lacking
and suffer many theoretical uncertainties associated with mass
transfer, chemical mixing and orbital evolution, especially in the
domain of low- and intermediate-mass stars (Pols 1994; Nelson
& Eggleton 2001).

The state-of-the-art in binary modelling consists of two ap-
proaches. On one hand, synthetic binary models (Nelemans et al.
2001; Hurley et al. 2002; Izzard et al. 2006; Belczynski et al.
2008) merge the results of detailed single-star modelling, but
fitted to formulae or tabulated for fast evaluation, with binary-
evolution algorithms. While these are excellent tools to explore
the binary-star parameter space in statistical studies, they still as-
sume each star in the binary evolves like an isolated, single star.
They also cannot tell us much about the interior structure of the
stars and do not properly follow mixing of chemicals or angular
momentum transport. On the other hand, binary stellar evolution
codes have been developed to follow in detail the evolution of
each component of the system. Most of these simulations con-
sider relatively massive stars (e.g. De Loore & Doom 1992; Pols
1994; Wellstein et al. 2001; Nelson & Eggleton 2001; Petrovic
et al. 2005) and focused on mass transfer prior to the supernova

explosion (e.g. Podsiadlowski et al. 1992), on the formation of
gamma-ray bursts (Cantiello et al. 2007) or more specifically on
helium white dwarfs (Benvenuto & De Vito 2003).

Models of the evolution of low- and intermediate-mass bina-
ries for various initial masses and metallicities are missing and
BINSTAR has been designed to this end. Low- and intermediate-
mass binary systems are of great interest because they often
display unusual chemical compositions. Good examples are the
Ba and the CH stars, rich in barium and carbon respectively,
which are thought to have been polluted by material from a
companion star which is now a white dwarf (e.g. Jorissen 1999;
Jorissen et al. 1998). Similarly, the carbon-enhanced metal-poor
(CEMP) stars probably result from binary mass transfer involv-
ing a carbon-rich companion star (Masseron et al. 2010), which
are important in studies of stellar archaeology and near-field cos-
mology. Post-asymptotic giant branch (post-AGB) stars also rep-
resent a challenge to modellers, as their evolution is thought to
involve circumbinary disc-orbit interactions (e.g. Dermine et al.
2013).

The presence of a companion star is also essential for the un-
derstanding of nova explosions which are an important source of
some rare isotopes such as 15N and 17O (e.g. José & Hernanz
1998) or X-ray binaries. Many outstanding questions related
to the effect of binarity on light-element production (e.g. in
3He-rich stars), on the pulsation properties of stars (e.g. Kamath
et al. 2010) or whether mass transfer is conservative or not (e.g.
van Rensbergen et al. 2011) need to be addressed with a set
of detailed low- and intermediate-mass (M � 8 M�) binary-star
models. BINSTAR will be the tool for that study.
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The paper is organised as follows: in the next two technical
sections, a detailed presentation of the stellar and binary physics
is presented. Section 4 discusses some numerical aspects of the
code, benchmark applications as well as a study of the tidal
torque constant are presented in Sect. 5 before concluding.

2. Input stellar physics

BINSTAR is an extension of the 1D stellar evolution code
STAREVOL, that handles the simultaneous calculation of the
binary orbital parameters (separation and eccentricity) as well
as the two stellar components. The stellar input physics is the
same as described in Siess (2006). In short, the equation of state
derives from Pols et al. (1995) which is based on a minimisa-
tion of the Helmholtz free energy and that takes into account the
effects of pressure ionisation and Coulomb shielding.

The radiative opacity tables are supplied by Iglesias &
Rogers (1996) above 8000 K, supplemented at lower tempera-
ture by Ferguson et al. (2005). Conductive opacities are com-
puted from Hubbard & Lampe (1969); Iben (1975); Raikh &
Iakovlev (1982); Itoh et al. (1983); Mitake et al. (1984). The
effect of carbon enrichment in the low temperature molecular
opacities in carbon rich stars is treated analytically following
Marigo (2002).

Concerning the nuclear physics, the neutrino energy loss
rates are given by Itoh et al. (1996) and take into account
the effects of plasma, pair, bremsstrahlung, recombination, and
photo neutrino emission. Screening factors are calculated using
the formulation of Mitler (1977). Our nuclear network includes
Nsp = 53 species (from neutrons to 37Cl) coupled to a network
of 185 nuclear reactions taking into account all relevant (n-, p-,
α-capture), weak (electron capture, β-decay) and electromag-
netic (photo-disintegration) interactions. This network ensures
accurate nuclear energy production up to neon burning.

Neutrons are followed approximately by use of a fake
neutron sink particle (Jorissen & Arnould 1989). If avail-
able, charged particle nuclear reactions rates are preferentially
taken from Iliadis et al. (2010), then Angulo et al. (1999) else
Caughlan & Fowler (1988). Neutron capture rates are from Bao
et al. (2000) and experimental beta decay rates are taken from
Horiguchi et al. (1996). Nuclear burning and chemical transport
are solved simultaneously after the structure has converged and
the evolution of the composition is governed by a system of Nsp
coupled differential equations:

dYk

dt
=
∂

∂m

(
D
∂Yk

∂m

)
+

∑
k+l→i+ j

YkYl〈σv〉kl

−
∑

i+ j→k+l

YiY j〈σv〉i j (1)

for k = 1,Nsp, where Yi, j,k,l are the molar mass fractions of
species i, j, k and l, 〈σ v〉kl and 〈σ v〉i j is the average nuclear
cross section between the particles k, l and i, j respectively, and
D is the diffusion constant.

The treatment of convection is based on the mixing length
theory (MLT) as described in Cox & Giuli (1968) with the pa-
rameter αmlt = 1.75 calibrated from our solar fit model. Non-
standard mixing processes can also be taken into account, in
particular the treatment of thermohaline mixing as described in
Siess (2009), diffusive overshooting (Siess et al. 2002) and semi-
convection (Langer et al. 1985). In case of convective mixing,

the diffusion coefficient in Eq. (1) is given by

Dconv =

(
∂m
∂r

)2

αmltHP
vconv

3
(2)

where Hp is the local pressure scale height and vconv the convec-
tive velocity as given by the MLT.

3. Input binary physics

In the following subsections, we describe the key input binary
physics implemented in BINSTAR. The evolution of the orbital
angular momentum is presented in Sect. 3.1, while the treatment
of mass transfer via Roche-lobe overflow (RLOF) and the result-
ing torques applied to each star are given in Sect. 3.2. A corre-
sponding prescription for mass transfer via stellar winds is de-
scribed in Sect. 3.3. The calculation of tides is given in Sect. 3.4,
and Sect. 3.5 provides a summary of the different mass transfer
processes.

3.1. Angular momentum evolution

The binary system consists of a donor (subscript “d”) and gainer
(subscript “g”) of mass Md and Mg, radii Rd and Rg, spins Ωd
and Ωg. The total angular momentum (AM) of the binary star
system (JΣ) is the sum of the orbital (Jorb) and stellar angular
momentum of the gainer (Jg) and donor (Jd)

JΣ = Jd + Jg + Jorb , (3)

where

Jorb = Md Mg

[
Ga(1 − e2)
Md + Mg

]1/2

, (4)

with a the binary separation and e the eccentricity. The time
derivative of Eq. (4) gives the evolution of the binary separation

ȧ
a
= 2

J̇orb

Jorb
− 2

(
Ṁd

Md
+

Ṁg

Mg

)
+

Ṁd + Ṁg

Md + Mg
+

2eė
1 − e2

· (5)

To compute the separation at the next timestep
(a(t + Δt) = a(t) + ȧΔt), one has to determine the various
mass transfer rates (Ṁd and Ṁg), the rate of change of the
orbital angular momentum (J̇orb) as well as ė. The quantity J̇orb
is calculated by imposing AM conservation i.e.

J̇orb = J̇Σ − J̇d − J̇g, (6)

where J̇d, J̇g are the torques applied to the star and J̇Σ the rate of
change of the system angular momentum as should be accounted
for in non-conservative evolution.

3.2. Mass and angular momentum transfer via Roche-lobe
overflow

3.2.1. Mass loss rate from the donor star

The Roche-lobe radius for the donor star, RL1,d, is determined
using the formalism described by Eggleton (1983), i.e.

RL1,d =
0.49q2/3

0.60q2/3 + ln(1 + q1/3)
, (7)

where the mass ratio

q = Md/Mg. (8)
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The Roche-lobe radius of the accretor can be found by inverting
the value of q in Eq. (7).

We treat mass transfer via RLOF according to the prescrip-
tion described in Kolb & Ritter (1990). In this formalism, the au-
thors make the distinction between 2 regimes depending whether
the donor’s Roche radius lies within the optically thick or thin re-
gion of the star. Mass loss from the optically thin region of the
donor star (where the optical depth τ < 2/3) is calculated using
the formalism given by Ritter (1988), i.e.

Ṁd = −|ṀRLOF| = −Ṁ0 exp

(
Rd − RL1,d

H̃P

)
< 0, (9)

where H̃P is the pressure scale height at radius RL1,d. Ṁ0 is the
mass transfer rate if the donor star exactly fills its Roche lobe,
and is given by

Ṁ0 =
2π√

e
F(q)

R3
L1,d

GMd

(RTeff,d

μph,d

)3/2

ρph,d. (10)

Here, all quantities refer to the donor: Teff,d is the effective tem-
perature, ρph,d the photospheric density, μph,d the mean molecular
mass at the photosphere and R is the ideal gas constant. F(q) is
a function of the mass ratio and is given by

F(q) = q

(
RL1,d

a

)−3 {
g(q)

[
g(q) − 1 − q

]}− 1
2 . (11)

In turn, g(q) depends on the distance from the centre of mass of
the donor star to the L1 point xL, in units of the binary separa-
tion a, and is given by

g(q) =
q

x3
L

+
1

(1 − xL)3
· (12)

Finally, the pressure scale height at the location of the L1 point,
H̃P, is calculated from

H̃P =
HP,ph

γ(q)
, (13)

where HP,ph is the pressure scale height at the donor’s photo-
sphere and γ(q) a function of the mass ratio q

γ(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.954 + 0.025 log10 q
−0.038

(
log10 q

)2 if 0.04 ≤ q ≤ 1
0.954 + 0.039 log10 q
−0.114

(
log10 q

)2 if 1 ≤ q ≤ 20.

(14)

However, Eq. (9) is only valid if the Roche lobe radius and the
donor radius are (approximately) equal, and if the two radii move
in step, i.e. Ṙd = ṘL1,d. Indeed, some studies calculate mass
transfer iteratively until the condition RL1 = Rd is satisfied (e.g.
Benvenuto & De Vito 2003; Kalogera et al. 2004). However,
care must be taken when applying this procedure. This condition
holds if the donor star has a “sharp” surface, i.e. HP,ph/Rd 	 1.
This is the case for main sequence stars, but not for giants or
AGB stars due to their extended atmospheres. Pastetter & Ritter
(1989) showed that applying Ṙd = ṘL1,d to the study of mass
loss from thermally-pulsating AGB stars gives incorrect results.
The other condition (i.e. that the donor and Roche lobe radius
move in step) implies that the mass transfer rate is stationary, i.e.
M̈ ≈ 0. This is not the case during turn-on and turn-off of mass
transfer (D’Antona et al. 1989).

If either of these conditions are not satisfied, the stellar radius
significantly over-fills its Roche lobe and the Roche lobe will lie
in the optically thick region of the donor star, where τ > 2/3. In
this situation, we calculate the mass transfer rate via

ṀRLOF = Ṁ0 + 2πF(q)
R3

L1,d

GMd

∫ Pph

PL1

θ(Γ1)

(RT
μ

)1/2

dP, (15)

where Pph and PL1 is the pressure at the photosphere and at the
L1 point respectively, T is the temperature and μ is the mean
molecular weight and θ is a function of the adiabatic exponent,
Γ1 = (d lnP/d lnρ)ad, and is given by

θ(Γ1) = Γ1/2
1

(
2

Γ1 + 1

) Γ1+1
2(Γ1−1)

. (16)

3.2.2. Torque on the donor star

Material lost from the donor at the L1 point has the specific
AM of the stellar surface σL1 = ΩdR2

d where we can reason-
ably assume Rd = RL1,d (if the radius significantly exceeds the
Roche radius then other physics will take over, such as common-
envelope evolution or the formation of a circumbinary disc). The
torque applied on the donor resulting from RLOF mass transfer
is then

J̇RLOF
d = Ṁd ΩdR2

d < 0. (17)

3.2.3. Gainer star

In conservative evolution, all the mass leaving the donor is
accreted by the gainer. However this may not be always the
case as various hydrodynamical simulations of close (e.g. Sytov
et al. 2007) or wide (Theuns & Jorissen 1993; Podsiadlowski &
Mohamed 2007) binaries show. The presence of a hot spot can
also contribute to the ejection of mass (van Rensbergen et al.
2008) and the observation of circumbinary discs in wide post-
AGB binaries (van Winckel 2003; de Ruyter et al. 2006) may
also attest of this non-conservatism. To account for this process,
we use the standard 0 ≤ β ≤ 1 prescription where the mass ac-
cretion rate of the gainer is given by

Ṁg = −βṀd > 0. (18)

Material lost from the donor can either impact directly onto
the surface of the gainer or distribute into an accretion disc.
Assuming ballistic trajectories, we know that a particle, at its
closest approach, reaches a radius Rmin = 0.0425a

(
q
[
1 + q

])1/4

(Ulrich & Burger 1976).
If Rg < Rmin the stream goes around the star and after

one orbit collides with itself. After multiple collisions the mat-
ter accumulates in a narrow ring about the circularisation ra-
dius (Rcirc) and later spreads to form an accretion disc, assumed
to be Keplerian (for a review see Frank et al. 2002) of extent
Rdisc ≈ 2 Rcirc (Ulrich & Burger 1976). At the surface of the
gainer, the rate of angular momentum deposition, i.e. the applied
torque, is given by

J̇RLOF
g = ṀgΩcrit,gR2

g = Ṁg(GMgRg)1/2 > 0 , (19)

where

Ωcrit,g = (GMg/R
3
g)1/2. (20)
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On the other hand, if Rg > Rdisc the stream leaving the L1 point
impacts the star with a specific AM

jimpact = ‖R ∧ u‖,
= [(x − xg)ẏ − yẋ + (Rg/a)2]a2Ωorb, (21)

where the radius vector R = (x, y) and the velocity u = (ẋ, ẏ)
at impact are estimated by computing the ballistic trajectory of
a test particle in the potential of the gainer (Flannery 1975). In
Eq. (21), xg = Mg/(Md + Mg) is the distance from the centre of
mass of the gainer to the centre of mass of the binary system, and
Ωorb is the orbital angular speed. Distances are expressed in units
of the orbital separation and time in units of the orbital period.
The resulting torque is

J̇RLOF
g = Ṁg jimpact. (22)

3.3. Mass and angular momentum transfer via stellar winds

3.3.1. Wind loss

Mass is assumed to be lost in spherical shells by the wind leading
to an AM loss rate

J̇wind
loss,i = −

2
3
|Ṁwind

i |ΩiR
2
i , (23)

where Ṁwind
i is the wind mass loss rate from star i = 1, 2 as

prescribed by e.g. de Jager et al. (1988), Reimers (1975) or
Vassiliadis & Wood (1993). The spherical wind carries away the
specific AM of the surface layers as well as some fraction of
the orbital AM. This contribution, although not explicit in the
previous equation, is taken into account in our global AM con-
servation equation (J̇Σ in Sect. 3.5)

3.3.2. Wind accretion

This is the opposite of wind loss: material is accreted in shells
such that a positive surface torque is applied to the stellar sur-
face. In the classical Bondi-Hoyle scheme, the AM accreted
could well be zero (Blondin & Raymer 2012), but instead we
use the specific spin AM of the companion and accrete a frac-
tion fJacc onto the considered star

J̇wind
acc,i = +

2
3

fJaccṀBH
i Ω3−iR

2
3−i, (24)

where fJacc is a free parameter usually set to 1 and the
Bondi-Hoyle rate is given by

ṀBH
i =

1√
1 − e2

⎡⎢⎢⎢⎢⎣ GMi

(vwind
3−i )2

⎤⎥⎥⎥⎥⎦
2

×αBH

2a2

1
(1 + x2)3/2

|Ṁwind
loss,3−i|, (25)

where x = vorb/v
wind
3−i , v2orb = G(Md + Mg)/a, and

vwind
3−i = (2βwGM3−i/R3−i)1/2. The free parameter αBH is of

the order of 1.5 and βw ≈ 1/8 (Hurley et al. 2002). The accretion
rate depends on the companion’s mass loss rate and should only
be used in the limit of fast winds (vwind 
 vorb).

In case of slow winds, such as those occurring in red giant
branch (RGB) or AGB stars, this prescription is not valid, al-
though detailed hydrodynamical simulations (e.g. Theuns et al.
1996) suggest that values of αBH ten times less the standard value

could be used for slow winds. However, a better approach would
consist of incorporating a more physically realistic prescription
based on the results from hydrodynamical simulations. This re-
mains to be implemented (Abate et al. 2011).

3.4. Tides

The gravitational forces acting on stars in a binary system in-
duce a deformation of their structure and the appearance of tidal
bulges. Because the stellar material is viscous, the bulges make
an angle α with the line connecting the centre of the stars. As
a result of that tidal lag, the gravitational attraction generates a
torque on the bulges and force the synchronisation of the stellar
rotation rates with the orbital motion and, on a longer timescale,
to circularise the orbit. The orbital parameters change because of
the dissipation (conversion) of the star’s rotational energy into
heat. In the weak friction model, it is simply assumed that the
angle α is proportional to Ω − ω (e.g. Zahn 2008), where ω is
the orbital angular speed of the binary.

In convective stars, the kinetic energy of the large scale cur-
rents raised by the tides cascades down to ever smaller scales
until it dissipates into heat due to viscous friction of the convec-
tive environment. In radiative stars, the main dissipation mech-
anism is radiative damping of gravity modes that are excited by
the tidal potential (see Zahn 2005, for a review).

We separate the tides into the convective equilibrium tide and
the radiative dynamical tide. There are two general approaches,
those by Hut (1981) and Zahn (1975, 1977, 1989). The pre-
scription of Hut is valid for any e, and relies on calculation of
timescales from the prescription of Zahn. An improved prescrip-
tion for the equilibrium tides which is valid for any e was subse-
quently proposed by Zahn (1989).

The Hut (1981) formalism, which is developed in the frame-
work of the weak friction model, describes the evolution of the
orbital parameters for any eccentricity e, stellar spinΩ and sepa-
ration (a), the latter simply deriving from AM conservation. We
have

ė
e
= − (1 − e2)

τcirc

− 13
2 [18

7
f3(e2) − 11

7

(
1 − e2

)
3/2 f4(e2)

Ω

ω

]
(26)

and

Ω̇ =
1
τsync

ω

(1 − e2)6

[
f2(e2) −

(
1 − e2

)3/2
f5(e2)

Ω

ω

]
, (27)

where f2−5 are polynomials in e (see Appendix A), I =
2
3

∫ M

0
r2dm the momentum of inertia of the star, and M its total

mass. The convective-equilibrium and radiative-dynamic tidal
timescales are estimated below.

3.4.1. Tidal timescale for radiative stars

In radiative stars, Zahn (1977, Eq. (5.9)) gives (for ω = Ω)

1
τcirc
=

˙|e|
e
=

21
2

√
GM
R3

q̃(1 + q̃)11/6E2

(R
a

)21/2

· (28)

where E2 is a constant that depends on the stellar structure (see
Appendix B) and q̃ is the ratio of the mass of the companion
to the mass of the considered star. Zahn (1977) also gives the
synchronisation timescale for radiative stars (his Eq. (5.7)),

1
τsync

=
Ω̇

Ω − ω = 5
(
25/3

) √
GM
R3

q̃2(1 + q̃)5/6

×MR2

I
E2

(R
a

)17/2

. (29)
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Fig. 1. Different modes of mass exchange between stars in a binary sys-
tem; see text for details.

3.4.2. Tidal timescale for stars with a convective envelope

Zahn (1989) provides an improved prescription of equilibrium
tides to accommodate situations in which the orbital period be-
comes shorter than the convective turnover timescale, as may be
the case for close binaries. In this context, the weak friction ap-
proximation breaks down and one has to account for the multiple
Fourier component of the tidal potential. With this formalism,
the synchronisation and circularisation timescales (Eqs. (20) and
(21) of Zahn 1989) are given by

1
τsync

= 6
λ22

tf
q̃2 MR2

I

(R
a

)6

(30)

and

1
τcirc
= 21

λ10

tf
q̃(1 + q̃)

(R
a

)8

· (31)

The factors λlm (see Appendix C) are similar in magnitude to the
apsidal motion constant k2 (which was used previously in their
place) and the friction time

tf = (MR2/L)1/3. (32)

Fortunately, Zahn gives a prescription for their calculation
in his paper which has been implemented in BINSTAR (see
Appendix C below).

3.4.3. Summary

The computation of the tidal timescales allows us to estimate the
torque applied onto each star i

J̇tides
i = IiΩ̇i (33)

as well as the contribution of star i to the rate of change of eccen-
tricity ėi, where Ii is the moment of inertia. The rate of change
of the orbital eccentricity is then

ė = ė1 + ė2. (34)

The change in ȧ due to the tides is accounted for by the conser-
vation of angular momentum (Sect. 3.5).

3.5. Mass and angular momentum conservation

Figure 1 summarises the complex mass transfers taking place in
a binary system. The mass lost by the system during Δt is

ṀΣΔt = Md(t + Δt) + Mg(t + Δt) −
[
Md(t) + Mg(t)

]
(35)

or, expressed in terms of the mass transfer rate,

ṀΣ = Ṁwind
acc,d − |Ṁwind

d | + Ṁwind
acc,g − |Ṁwind

g | − (1 − β) |ṀRLOF|. (36)

The rate of angular momentum loss from the system is

J̇Σ = fΣṀΣ jorb < 0 , (37)

where

jorb = Jorb/(Md + Mg) (38)

is the specific angular momentum and fΣ is a free parameter
characterising the specific angular momentum of the ejected
material.

When solving for the evolution of the separation (Eq. (5)),
the unknown J̇orb is computed using Eq. (6) where the rate of
change of stellar angular momenta (i = 1, 2) are given by

J̇i = J̇wind
acc,i + J̇wind

loss,i + J̇RLOF
i + J̇tides

i . (39)

4. Numerical considerations

BINSTAR uses a staggered grid to provide spatial centring of the
stellar structure equations (e.g. Bodenheimer et al. 2007). The
dependent variables are the natural logarithm of the stellar radius
(ln r) and of the temperature (ln T ), the variable ln f from which
the EOS depends (see Pols et al. 1995) and the normalised lu-
minosity (Lm/Lnorm) where Lm is the stellar luminosity at mass
coordinate m and Lnorm the maximum value of |Lm| over the dis-
cretised structure. The radius r and luminosity Lm are defined
at the cell boundary while T , ln f and the composition are de-
fined at the centre of the cell. In our calculations, the evolution
of the chemical abundances is done after the stellar structures
have converged, i.e. the structure and nucleosynthesis equations
are decoupled. This approximation is valid provided the timestep
Δt is adequately chosen.

We use various criterion to constrain Δt based on the struc-
tural, nuclear, orbital and mass transfer timescales. Formally the
structural timestep Δtn+1

struc is determined from the time evolution
of relevant variables A = {r, ln f , T, ρ, L} throughout all stellar
grid points (shells k) during the previous timestep Δtn

Δtn+1
struc = min

k

[
FA

A(t)
A(t) − A(t − Δtn)

]
Δtn, (40)

where FA ≈ 0.05 represents the amount of change which is ac-
ceptable for the quantity A. The nuclear timestep is calculated as

Δtn+1
nuc = min

k

⎡⎢⎢⎢⎢⎢⎣Fi Yn
i

(
dYi

dt

)−1

dest

⎤⎥⎥⎥⎥⎥⎦ , (41)

where Fi (a few percent) has the same meaning as the parameter
FA, Yi is the molar abundance of species i where i = H, He, C or
Ne and ( dYi

dt )dest is the rate of destruction of Yi and is estimated
using the nuclear reaction rates of the slowest reactions of the H,
He, C and Ne burning chains.
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The timestep is also constrained by the requirement that the
orbital elements (e and a) do not vary too rapidly

Δtn+1
orb = min

(
Fe

e
ė
, Fa

a
ȧ

)
· (42)

Outside the hydrogen and helium main sequence phases, the
timestep is not allowed to exceed a fraction ∼30% of the
Kelvin-Helmholtz timescale (ΔtKH = GM2/RL). The timestep
is further constrained by the requirement that mass is not lost
(accreted) by the donor (gainer) in too few time-steps. The max-
imum mass transfer timescale, ΔtṀ is constrained by

ΔtṀ = min

(
Flost

Md

|Ṁd|
,Facc

Mg

|Ṁg|
)
, (43)

where Facc ≈ 0.01 and Flost ≈ 10−4. Finally, the new timestep is
given by the minimum for the 2 stars of

Δt = min
(
Δtn+1

struc,Δtn+1
nuc ,Δtn+1

orb ,ΔtṀ ,ΔtKH

)
. (44)

Before we start the iteration process, the spatial resolution of
each stellar component is adapted according to the structural
changes. In short, shells are added whenever the relative differ-
ence between 2 consecutive shells δV = ln |Vk+1/Vk| of one of
the variables V = {r, |L|, ln f , T, P, ρ} exceeds a given thresh-
old Δmax. On the other hand, if at a given shell the δV for all
the variables are less than Δmin the shell is removed. Typically,
Δmax ≈ 1.2 meaning that we allow a difference of at most 20%
between 2 shells and Δmin = 0.02.

Once the timestep has been selected and the rezoning per-
formed, a generalised Henyey method is used to solve simulta-
neously the stellar structure equations of the two stars as well
as the evolution of the orbital parameters (Eqs. (5) and (34)). At
each iteration during the convergence process, the mass transfer
rates are updated according to the changes in the stellar struc-
ture and orbital parameters. Mass is added or removed from a
mass coordinate M0 up to the surface. The value of M0 arbitrar-
ily corresponds to the mass coordinate where the temperature
first reaches 106 K. In the layers where the mass has been modi-
fied, the Lagrangian time derivative of a variable A is calculated
according to Neo et al. (1977),

DA
Dt

∣∣∣∣
m
=
∂A
∂t

∣∣∣∣
q
− d ln M

dt
∂A
∂ ln q

∣∣∣∣
t
, (45)

where M is the stellar mass and q is the pseudo-Lagrangian
coordinate,

q(Mr > M0) =
Mr − M0

M − M0
· (46)

The first and second term in the RHS of Eq. (45) are usually
referred to as the non-homologous and homologous terms, re-
spectively. We also ensure that when mass is accreted, the com-
position of the surface layers corresponds to that of the accreted
material, i.e. the matter is not mixed. The integration of the stel-
lar structure equations is done in one shot from the centre to
the surface where specific boundary conditions are applied. We
have two options: either stop the integration at an optical depth
τ = 2/3 and impose a black-body photospheric boundary con-
dition or use a grey atmosphere approximation. In the first case
the surface boundary conditions at the outermost shell N are

TN =

(
LN

4πσRN

)1/4

, (47)

ρN =
2GMNμN

3RTNκNr2
N

Ledd − LN

Ledd
, (48)

where Ledd is the Eddington limit, and the other symbols have
their usual meaning. In the grey approximation, the boundary
conditions write

TN = Teff

[
3
4

(
τN +

2
3

)]1/4

, (49)

ρN =
μNτN

RTN

⎛⎜⎜⎜⎜⎝GMN

r2
NκN

− aT 4
eff

4

⎞⎟⎟⎟⎟⎠ (50)

where a is the Stefan constant. We also emphasise that all the
derivatives are evaluated analytically, except for the opacity and
the dependence of εnuc on temperature. Finally, the code has
been largely parallelised using OpenMP instructions, specifi-
cally for the calculation of the equation of state, stellar opacity
and nucleosynthesis. This decreases CPU time by more than a
factor of two.

5. Applications

To test our new code, we have computed the evolution of two
close binaries undergoing case A (hydrogen core burning donor)
and case B (hydrogen shell burning donor) mass transfer (for
an exhaustive description of the various modes of mass transfer,
see Eggleton 2006). Models were selected according to literature
cases (and availability of the numerical data) for a comparative
study. We also investigate the behaviour of the tidal torque con-
stant E2 as a function of mass and metallicity. This parameter
determines the circularisation and synchronisation timescales of
stars with convective cores and radiative envelopes.

5.1. Algol systems

In the following test cases we assume, for the sake of compari-
son, that the orbit is circular and that the stars are not rotating,
implying that tidal interactions are not considered. Furthermore,
the evolution is assumed to be fully conservative, i.e. J̇Σ = 0 and
Ṁd + Ṁg = 0.

5.1.1. Case A mass transfer

In this calculation, we consider a 12+ 7.2 M� system with an
initial period of 4 days. Core overshooting is taken into account
by artificially mixing the core composition with that of the shells
located within a distance of α = 0.3 pressure scale height, Hp,
beyond the Schwarzschild limit. We assume instantaneous mix-
ing of that region and do not include wind mass loss, which
has a negligible impact. The global properties of the evolution
are illustrated in Fig. 2 and compared with a similar simula-
tion performed by the Vrije Universiteit Brussel (VUB) group
(van Rensbergen et al. 2008). The agreement between these in-
dependent calculations is remarkable and all the main features
of the evolution are present.

Mass transfer begins while the donor is on the main se-
quence. As we initially have q > 1, then conservative evolution
causes the orbit to shrink, ȧ/a < 0 (Eq. (5)), along with the or-
bital period and the Roche lobe radius (Eq. (7)). Mass loss is
therefore initially unstable because even though the donor star
loses mass, its radius decreases more slowly than the (shrink-
ing) Roche radius. The mass transfer rate rises very rapidly as
(Rd − RL1 ) becomes larger and reaches in our simulation a max-
imum value of 5 × 10−4 M� yr−1. This phase of rapid growth
lasts until the donor star restores thermal equilibrium, i.e af-
ter ∼2 × 105 yr which corresponds to the Kelvin-Helmholtz
timescale of the primary at the beginning of mass transfer.
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Fig. 2. Case A mass transfer. The initial binary parameters are Md = 12 M� (VUB solid black and ULB red dotted lines), Md = 7.2 M� (VUB
short dashed green and ULB long-dashed blue line) and P = 4d. The figure shows the evolution as a function of stellar mass of the stellar radius a),
the mass transfer rate (b), left axis) and period (b), right axis), the evolutionary path in the HRD of the binary system c) and the time evolution of
the mass transfer rate d). In panel d) the transfer time ttransfer is defined as t − 18.4 Myr for the VUB model and t − 29.3 Myr in our case. The final
masses are 2.66 M� and 16.54 M�.

During this period of rapid mass transfer, the mass ratio is re-
versed (q < 1) after which the orbital period lengthens, reaching
30 days by the end of the simulation. The subsequent evolution is
on a nuclear timescale, τnuc, and mass transfer is now driven by
the radial expansion of the star, caused by core hydrogen burn-
ing, and Ṁ ≈ M/τnuc.

Once hydrogen is depleted in the core, central convection
switches off, the donor contracts and for a short period of
time the system becomes detached, ceasing mass transfer. This
is marked in the Hertzsprung-Russell diagram (HRD) by the
presence of a hook in the track near log(Teff/K) = 4.2 and
log(L/L�) = 4 and by the discontinuity in the M − R rela-
tion around M ∼ 5 M�. However, as hydrogen shell burning

switches on, the primary re-expands and a second mass trans-
fer episode follows, termed case AB mass transfer (Ziółkowski
1970). During this subsequent mass transfer episode, the period
of the system increases significantly.

When helium ignites in the donor’s core, the structure con-
tracts as the star reaches the helium main sequence and mass
transfer stops. The evolution was terminated at neon ignition,
before the donor went supernova (we note that the VUB model
did not reach that evolutionary stage).

For the gainer star, the mass accretion timescale, Mg/|Ṁg| is
shorter than its Kelvin-Helmholtz timescale, τKH = GM2

g/RgLg,
and so the star is unable to maintain thermal equilibrium. The
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Fig. 3. Similar to Fig. 2 but for Case B mass transfer. The initial binary parameters are Md = 6 M� (VUB solid black and ULB red dotted lines),
Md = 3.6 M� (VUB short dashed green and ULB long-dashed blue line) and P = 3.5 d. In panel d), ttransfer is defined as t − 75.1 Myr for the
VUB model and t − 65.2 Myr in our case. The final masses are 0.86 M� and 8.73 M�.

gainer therefore ascends the HRD with a higher luminosity com-
pared to a main sequence star of the same mass.

At the end of the calculation, the final stellar masses are
almost identical between the two model sequences. Compared
with the VUB models, we obtain a slightly longer duration of the
slow phase and a longer detached phase preceding case AB mass
transfer. These minor differences are the consequence of the
slightly higher mass transfer rate in the VUB model which is
attributed to their somewhat larger donor radius, and hence a
larger Roche lobe overfilling factor. Concerning the gainer, we
note that near the peak mass transfer rate, the radius of the VUB
gainer is larger and shifted towards higher mass. Again these ef-
fects are due to the higher mass accretion rate which drives the
gainer even further out of thermal equilibrium and imposes a
higher luminosity than in a relaxed configuration.

5.1.2. Case B mass transfer

The initial system configuration for this model is a 6.0+3.6 M�
with a period of 3.5 days. An overshooting of α = 0.23Hp is
applied at the edge of the convective core and mass loss by stellar
winds is neglected.

Following Kippenhahn & Weigert (1967), case B mass trans-
fer starts once the more massive star has left its main sequence
and crosses the Hertzsprung gap. Similarly to case A, it proceeds
in two steps: a rapid phase during which the mass loss rate rises
up to about 10−4 M� yr−1 and the mass ratio is reversed, followed
by a slow phase during which little mass is accreted but most of
the orbital changes take place. During the phase of rapid mass-
exchange, our mass transfer rate (Fig. 3) also shows the typical
double peak feature (van der Linden 1987) where the second
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bump in ṀRLOF is associated with the development of a thin sur-
face convection zone. The maximum mass transfer rate which is
approximately given by Ṁ ∼ M/τKH (Paczyński 1971), is higher
compared to a case A because when the donor star fills its Roche
lobe, it has a larger radius and hence shorter τKH. Consequently
the duration of the RLOF phase is also significantly shorter.

Another difference compared to case A is the maintenance
of a relatively high mass transfer rate after the fast phase. This
is also related to the structure of the star, where hydrogen-shell
burning is driving the expansion of the donor’s radius. In contrast
to the core-hydrogen burning donor in case A, case B evolution
occurs on the nuclear timescale of hydrogen-burning shell, τHBS,
(Paczyński 1971) which is much shorter than τnuc. Because Ṁ ≈
M/τHBS, the mass loss rate is larger. Mass transfer ceases when
helium eventually ignites: the donor then contracts and the star
relaxes towards its helium main sequence location in the HRD.

Our simulation compares again very well with that of the
VUB group. The mass transfer rate evolution is very similar;
both the peak value and the duration of each phase is well re-
produced and the final masses are again almost equal. In the
M-R diagram, we note that the VUB model experiences a short
contact phase which is only just avoided in our simulation. The
slightly larger initial stellar radius of the secondary VUB model
is responsible for this feature and is due to overshooting (see
below). One also notices that the stellar age at the onset of mass
transfer (ttransfer in the figures) is always longer in our simulation.
The reason for this difference is related to the treatment of core
overshooting which produces a slightly larger convective core in
the VUB model, thus extending the main sequence lifetime and
the slow radius expansion. In our simulation, the donor star ex-
periences a case BB RLOF during the short period of time that
lasts between the end of core helium burning and carbon ignition
(De Greve & De Loore 1977; Delgado & Thomas 1981).

5.2. Tidal timescale in main sequence stars with radiative
envelopes

As presented in Sect. 3.4.1 for stars with a radiative envelope,
tidal interaction operates through the dissipation of energy by
gravity modes generated by the periodic tidal potential. In this
theory, the characteristic tidal timescales τcirc and τsync are in-
versely proportional to the quantity E2 (Eqs. (28) and (29)). The
only available modern calculations that provide E2 values are
the models computed by Claret (2004, 2005, 2006, 2007) which
include core overshooting. Comparison between the 5 M�, Z =
0.02 model of Claret (2004) and our 5 M� with similar physics,
reveals noticeable discrepancies. As shown in Fig. 4, our E2 val-
ues, at that metallicity and mass, are systematically lower by a
factor varying from 10 up to 100 at the end of core-hydrogen
burning. In our models, the tidal torque constant decreases pro-
gressively as the convective core shrinks while in Claret (2004)
it varies little until the end of the main sequence where it drops
abruptly.

It is very difficult to understand the disagreement between
these models considering that the evolutionary path in the HRD,
core masses and main sequence lifetime are almost identical
(compare the blue, long-dashed and orange, short long-dashed
lines in Fig. 4). The differences are persistent over the consid-
ered mass range (2 M� ≤ M ≤ 20 M�) and tend to increase
with stellar masses where the effect of wind loss on the structure
become important. As mentioned by Claret (2004), the determi-
nation of E2 requires dedicated numerical attention because it
involves the calculation of the derivative of the Brunt-Väisälä
frequency at the edge of the convective core. To check if the

Fig. 4. Dependence of the tidal torque constant E2 on the input physics
for a 5 M� model. The solid (black) line corresponds to our standard
Z = 0.02 model, the red-dotted, green-dashed and blue-long-dashed
curves refer to the overshooting models with parameters α = 0.05, 0.1
and 0.2, respectively. For illustration, we also plot the 5 M�, Z = 0.0001
(cyan-dot–short-dashed line), Z = 0.004 (magenta-dot-long-dashed
line) models with no core overshooting as well as the result of Claret
(2004) for M = 5 M�, Z = 0.02 (orange, short-long-dashed). The mid
and bottom panel display the evolution of radius and mass of the con-
vective core for these models.

differences were ascribed to some inadequate numerical reso-
lution, we ran additional tests with increased resolution but we
obtained the same results.

In the top panel of Fig. 5, we display the evolution of E2R9

which is inversely proportional to the circularisation time. The
important point to mention is that, in contrast to the results of
Khaliullin & Khaliullina (2010) who used models from Claret

(2004), our circularisation timescale τcirc ∝
(
E2R9

)−1
is not

a monotonically decreasing function of time but instead re-
mains relatively constant over the entire main sequence lifetime.
This implies that tidal effects are constantly acting during core-
hydrogen burning with the same strength.

As emphasised in Claret (2004), the calculation of E2 (see
Appendix B) is not straightforward and requires the knowledge
of the stellar structure. To include the effects of tides in popu-
lation synthesis calculations, Hurley et al. (2002) adopt the fol-
lowing fit (using the data provided by Zahn 1975) in terms of the
stellar mass M

E2 = 1.592 × 10−9

(
M
M�

)2.84

· (51)

The short lines in the upper right corner at the bottom of Fig. 5
shows the values of E2 given by this formula for the considered
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Fig. 5. Evolution of the tidal torque constant E2 (bottom panel), radius
of the convective core (middle) and the quantity E2R9 ∝ τ−1

circ for solar
composition models of mass M = 2, 2.5, 3.0, 4.0, 5.0, 7.0 10, 15 and
20 M� as a function of the normalised main sequence lifetime. In each
panel, the highest mass track corresponds to the top curve. In the lower
panel, the solid lines on the upper right corner indicate the (constant)
values of E2 for each mass as provided by Eq. (51).

masses. This parametrisation always overestimates E2 by at least
a factor of ten and the discrepancy increases with time as E2
drops near the end of the main sequence with the reduction of
the convective core size. Our average

〈E2〉 = 1
tMS

∫ tMS

0
E2 dt, (52)

with tMS the main sequence lifetime, is a factor about
15−25 smaller than the value provided by Eq. (51). The Hurley
et al. (2002) study largely under-estimates the circularisation and
synchronisation timescale and the assumption that at the time of
RLOF the orbits will be circularised and the stellar components
synchronised may not necessarily hold. In Appendix B we pro-
vide a new fit for this variable as a function of mass and metallic-
ity that can easily be implemented in binary population synthesis
codes.

Our models also allow us to study the dependence of E2 on
stellar parameters (mass, age and core overshooting). For a given
mass, E2 decreases with increasing metallicity. This is related to
the structure of the convective core and in particular to its ra-
dial extent. Stars with a lower metal content have more compact
core because, in order to sustain their higher luminosity, they
have to contract more to increase the central temperature and
the nuclear energy production. As shown in Fig. 4, including
overshooting at the border of the convective core increases its
mass but marginally its radius. As a consequence, because E2 is

mostly dependent on the radius, core overshooting does not lead
to a large increase in E2, a conclusion also reached by Claret &
Gimenez (1998).

6. Summary

This paper provides a detailed description of the binary physics
implemented in the new stellar evolution code BINSTAR. One
of the strength of this code is the simultaneous resolution of the
stellar structure equations of each star along with the evolution of
the orbital separation and eccentricity. The mass transfer rate is
calculated at each iteration during the convergence process fol-
lowing the optically thin and thick case as described in Kolb &
Ritter (1990). The prescriptions for the equilibrium and dynam-
ical tides have been implemented following Zahn (1975, 1977,
1989) and our numerical scheme has been designed to ensure
angular momentum conservation at all times.

Test simulations for case A and base B mass transfer have
been computed and show remarkable agreement with the pub-
lished models of the VUB group (van Rensbergen et al. 2008).
The rate of mass transfer, the duration of RLOF phases, the fi-
nal masses and the evolution in the HRD are well reproduced,
providing a successful validation of our binary stellar evolution
code.

We also investigated the effect of tides on main sequence
stars with radiative envelope, i.e. for initial masses Minit ≥ 2 M�.
We find that our tidal torque constant E2 is about a factor 10 to
100 smaller than previous estimates by Claret (2004). We could
not find the source of this discrepancy considering the apparent
similarities in the stellar structures. Contrarily to Khaliullin &
Khaliullina (2010), our self-consistent models indicate that the
circularisation timescales are relatively constant during the en-
tire main sequence lifetime. This also implies the circularisation
timescales computed by BINSTAR are longer than previously
anticipated.

This code, with input physics inherited from STAREVOL, is
mostly dedicated to the study of low and intermediate mass bi-
naries. In the future, we will use this code to study mass transfer
in eccentric binaries.
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Appendix A: Hut’s polynomials

The polynomials f2−5 used in Eqs. (26) and (27) are given by
(Hut 1981)

f1 = 1 +
31
2

e2 +
255

8
e4 +

185
16

e6 +
25
64

e8, (A.1)

f2 = 1 +
15
2

e2 +
45
8

e4 +
5

16
e6, (A.2)

f3 = 1 +
15
4

e2 +
15
8

e4 +
5

64
e6, (A.3)

f4 = 1 +
3
2

e2 +
1
8

e4 (A.4)

and

f5 = 1 + 3e2 +
3
8

e4. (A.5)
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Appendix B: Calculation of E2

The equations derived by Zahn (1977) are summarised by Claret
& Cunha (1997). The parameter En is given by

En = γn
ρ f R3

M

[
R
gs

d
dx

(−gB
x2

)
f

]−1/3

(Hn)2 , (B.1)

where f labels the edge of the convection zone, s the surface,
x = r/R, g the gravity, R the stellar radius, M the stellar mass
and γn is a numerical constant and

γn =
38/3 [Γ(4/3)]2

(2n + 1) [n(n + 1)]4/3
, (B.2)

is the usual gamma function. The function B can be calculated
from (known) stellar variables

B =
d
dr

ln ρ − 1
Γ1

d
dr

ln P =
δ

HP
(∇ − ∇ad), (B.3)

where we have neglected the ϕ∇μ/δ term given in Kippenhahn
& Weigert (1994).
It remains to calculate Hn which is defined by

Hn =
1

X(xf)Y(1)

∫ f

0
X

[
d2Y
dx2
− n(n + 1)Y

x2

]
dx, (B.4)

where, for n = 2, X and Y are the solution of the differential
equations

d2X
dx2
− d lnρ

dx
dX
dx
− 6

x2
X = 0 (B.5)

and

d2Y
dx2
− 6

x

(
1 − ρ
ρ̄

)
dY
dx
− 6

(
2
ρ

ρ̄
− 1

)
Y
x2
= 0. (B.6)

B.1. Boundary conditions

The variable X is defined in Zahn (1970) Eqs. (36) and (37),

X = ρx2 dχ
dx
· (B.7)

At x = 0 from Zahn’s Eq. (2b) we have

dχ/dx = (σ2 + gA)a − A(x −Φ) (B.8)

and

χ = a = Φ = 0 . (B.9)

hence also dχ/dx = 0. Just before Eq. (36) Zahn (1970) gives
the derivative

dX
dx
= n(n + 1)ρχ , (B.10)

which is zero because χ = 0 at x = 0.
The variable Y is defined by Eq. (33) of Zahn (1970) by

Y = M
x3

m(x)
y1(x) , (B.11)

where m(x) is the mass coordinate. The function y1(x) is in-
troduced before Eq. (29) and has the property y1x−(n+1) → 1
as x → 0. Hence y1 → x3 because n = 2. This implies that
at x = 0 we have Y = M x6/m(x) = 0 because m(x) → 0

more slowly than x6 (approximately m(x) ∼ x3 from integrat-
ing dm/dx = 4πx2ρR−3). We can then differentiate Y to find

dY/dx = M

(
6x5

m(x)
− x6

m2(x)
dm
dx

)

= M

(
6x5

m(x)
− x6

m2(x)
4πx2ρ

R3

)
, (B.12)

which is zero by a similar argument.

B.2. The X equation

We can rewrite

d2X
dx2
− d lnρ

dx
dX
dx
− 6

x2
X = 0 (B.13)

as x2X′′ + Ax2X′ − 6X = 0, where A = −d lnρ/dx. Now using a
series solution

X =
∞∑

n=0

anxs+n, (B.14)

our differential equation becomes

x2X′′ + Ax2X′ − 6X =
∞∑

n=0

an(n + s)

×(n + s − 1)xn+s

+Aan(n + s)xn+s+1

−6anxn+s . (B.15)

Collecting like terms of xn+s (n = 0 . . . ), the xs terms give
a0s(s − 1) − 6a0 = 0 i.e. s(s − 1) = 6 hence s = −2 or 3. If
we use the an series with s = 3 and isolate the coefficients of the
polynomials we obtain the following recursion relation

an+1 =
A(n + 3)

6 − (n + 3)(n + 4)
an. (B.16)

If we now use the bn series with s = −2, X = b0x−2 + b1x−1 +
b2 + b3x + b4x2 + . . . the relation between the coefficients is the
same as for an (Eq. (B.16)). The boundary condition X(0) = 0
implies that b0 = b1 = b2 = 0 and by recursion this implies that
bn = 0∀n , so the solution with s = −2 is simply X = 0 and is
thus discarded. The first coefficient a0 is undefined but cancels
in the final expression for Hn in Eq. (B.4). Note that y ∼ x3 for
small x (neglecting higher powers) as suggested by Zahn (1970).
This gives us X′ ∼ x2 and X′′ ∼ x hence the differential equation
can be integrated for small x and then numerically for all for
0 < x < 1.

B.3. The Y equation

We can rewrite the equation

d2Y
dx2
− 6

x

(
1 − ρ
ρ̄

)
dY
dx
+ 6

(
1 − 2

ρ

ρ̄

)
Y
x2
= 0 (B.17)

as x2Y′′ + AxY′ + BY = 0, where A = 6(ρ/ρ̄ − 1) and B =
6(1 − 2ρ/ρ̄). This can be solved exactly – it is an Euler-Cauchy
equation. Let x = et then dx = etdt and hence

xY′ =
dY
dt

and x2Y′′ =
d2Y
dt2
− dY

dt
, (B.18)
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Table B.1. E2 fit coefficients as a function of metallicity Z, to be used in conjunction with Eq. (B.23).

Z a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

0.0001 1.5909 –7.1043 –3.2322 –1.0281 –29.1353 172.7740 –418.4917 –37.7804 813.8699 –36.6362
0.001 1.4264 –6.9978 –3.6821 –0.5334 –46.2523 88.3548 –73.2723 –38.6172 158.8992 28.6095
0.004 2.1801 –8.0909 –2.7135 –1.8850 3.2948 70.9941 –216.9091 –38.8034 412.0707 30.5082
0.008 2.4376 –8.5739 –1.8649 –2.8222 110.7031 27.9968 –598.1951 72.4412 1086.4656 –164.8041
0.01 2.5571 –8.6911 –1.3728 –3.1774 81.9522 –14.0197 –273.6873 64.4537 473.5696 –116.7793
0.02 2.5054 –8.8783 –2.2369 –2.5918 19.6305 57.4532 –302.7735 6.5366 576.7844 –58.2294
0.03 3.4801 –9.7200 –0.3602 –3.9308 –4.5261 47.5445 119.4101 –210.7684 –207.6737 354.8196

Notes. The corresponding curves are illustrated in Fig. 5.

which gives us a new equation

d2Y
dt2
+ (A − 1)

dY
dt
+ BY = 0 . (B.19)

This is a standard second-order differential equation with con-
stant coefficients. The auxiliary equation is

D2 + (A − 1)D + B = 0, (B.20)

which has roots

D1,2 =
1 − A ± √

(A − 1)2 − 4B
2

(B.21)

and then Y = a1eD1 t + a2eD2 t hence

Y = a1xD1 + a2xD2 . (B.22)

At x = 0 we have ρ/ρ̄ = 1 hence A = 0, B = −6 and D = 3 or
−2. The x−2 solution must have zero coefficient, because Y = 0
at x = 0 hence Y(x = 0) = a1x3, which agrees nicely with
the definition of Y in terms of y1 given above. Again the a1 is
unknown but it cancels in the final expression for Hn, Eq. (B.4).
Near x = 0 we have Y′ = 3a1x2 and Y′′ = 6a1x from which the
differential equation can be integrated numerically for 0 < x < 1.

B.4. E2 fits

A Levenberg-Marquardt algorithm (Press et al. 1992) was used
to fit the values of E2 as a function of time t along the main se-
quence and stellar mass M for a given metallicity. The functional
form of the fit is given by

log(E2) = a1m̃ + a2 + (a3m̃ + a4)t̃

+
a5m̃ + a6

a7m̃ + a8 + (a9m̃ + a10) t̃
, (B.23)

where t̃ = t2/(1 + t) ∈ [0, 1/2] and m̃ = log10M with M in solar
mass. The coefficients ai are given in Table B.1 for each com-
puted metallicity based on models computed without core over-
shooting. Our fits are accurate to within 3% of the computed
value for M ∈ [1.6, 20]. We also derived a fit to the main se-
quence lifetime as a function of mass and metallicity

log(tMS/yr) =
4881 + 31 787M1.3 + 7522M2.5

3467M1.2 + 1125M2.5
(B.24)

×
(
1 − 0.0281Z̃ − 0.0139Z̃2 − 0.00179Z̃3

)
,

where Z̃ = log10(Z). This duration thus represents a lower limit
of the main sequence lifetime. The fit is accurate to within 1.5%
for Z ∈ [10−4, 0.03] and M ∈ [1.6, 20]. We would like to stress
that Eq. (B.24) was derived from models which did not include
core overshooting.

Appendix C: λlm parameters of Zahn formalism

Zahn (1989) describes an alternative method for calculating the
tidal torques in stars with convective envelopes. This involves
dropping the k2 calculation in favour of the parameters λlm where
l and m are integers which describe a given harmonic used in
the expansion of the tidal potential and are related to the tidal
timescale by Πlm = 2π/ |lω − mΩ|. According to Zahn (1989),
we have

λlm = 0.8725
(
α′

)4/3 E2/3

×
[∫ 1

xa

x22/3(1 − x)2 dx

+ x7/6
a (1 − xa)3/2

∫ xa

xb

x37/6(1 − x)1/2 dx

]
, (C.1)

where xb = rconv/R is the base of the convective envelope. So in
general two integrals are required, although in practice there is
often no root, so no xa, and just one integral is required (the sec-
ond one, with limits xa to 1). Note that unless the tidal timescale
and orbital period are similar, all the λlm are essentially identical
and the theory should be similar to that of the older 1970s papers
which use k2 instead. The value of xa is given by

x7/6
a (1 − xa)3/2 =

(
5
2

)3/2

(α′)−2/3E−1/3Πlm

2tf
, (C.2)

where α′ = 0.762αMLT and tf (Eq. (32)) is the convective
turnover timescale. When the tidal timescale is large compared
to the orbital period the RHS of Eq. (C.2) is also large and there
is no root to the equation, as would be expected. However, when
the tidal timescale is small the RHS is also small so to deter-
mine if there is a root to the equation we simply go through the
shells in the convective envelope looking for LHS − RHS < 0
and choose the shell for which the difference |LHS − RHS| is
smallest, hence we have r = ra at that shell, hence xa = ra/R. To
calculate the parameter E, we use the fact that at the base of the
convective envelope, the density is given by

ρconv =
M

4πR3
Eh3/2. (C.3)

The variable h is related to the pressure scale height by the re-
lation Hp = Rhx2/q where x = rconv/R and q = mconv/M where
rconv and mconv are the radius and mass co-ordinate at the base of
the convective envelope. Using ρ̄′ = M/(4πR3) = ρ̄/3, we obtain

E =
ρconv

ρ̄′
h−3/2 =

ρconv

ρ̄′

(
HpR

r2
conv

mconv

M

)−3/2

· (C.4)

Zahn suggests this has a value of 45.48 in a fully convective star.
With our pre-main sequence models, which are fully convective,
we obtained a value between 45 and 47.
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