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ABSTRACT

With the iminent launching of COROT and the prepara-
tion of new helioseismology instruments such as GOLF-
NG (cf. DynaMICS project), we need a coherent pic-
ture of the evolution of rotating stars from their birth to
their death. We describe here the modelling of the macro-
scopic transport of angular momentum and matter in stel-
lar interiors that we have undertaken to achieve this goal.
First, we recall in details the dynamical processes that are
driving these mechanisms in rotating stars and the theo-
retical advances we have done. Then, we present our new
results of numerical simulations which allow us to fol-
low in 2D the secular hydrodynamics of rotating stars,
assuming that anisotropic turbulence enforces a shellular
rotation law. Finally, we show how this work is leading to
a dynamical vision of the Hertzsprung-Russel diagram in
support of asteroseismology and helioseismology and we
discuss the different processes that should be studied in
next future to improve our description of stellar radiation
zones.
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1. DYNAMICS OF STELLAR RADIATION
ZONES AND DIFFERENTIAL ROTATION

Rotation, and more precisely differential rotation has a
major impact on the internal dynamics of stars.
First, as it is known from the theory of rotating stars, rota-
tion induces some-large scale circulations, both in radia-
tion and convection zones, which act to transport simulta-
neously angular momentum, chemicals but also magnetic
field by advection. In radiation zones, the large-scale cir-
culation, which is called the meridional circulation, is due
to the differential rotation, to the transport of angular mo-
mentum and to the action of perturbing forces, namely
the centrifugal force and the Lorentz force (cf. [4], [39],

[13], [10], [26]).
Next, differential rotation induces hydrodynamical tur-
bulence in radiative regions through various instabilities:
the secular and the dynamical shear instabilities, the baro-
clinic and the multidiffusive instabilities. In the same way
that atmospheric turbulence in terrestrial atmosphere, it
acts, to reduce gradients of angular velocity and of chem-
ical composition; thus, it is modelled as a diffusive pro-
cess (cf. [31], [8], [15]).
Then, rotation has a strong impact on stellar magnetism.
For example, it interacts with turbulent convection in con-
vective envelopes of solar-type stars to lead to a dynamo
mechanism and, as it is expected from observations, to a
cyclic magnetism. In radiation regions, it interacts with
fossil magnetic fields where the secular torque exerted by
the Lorentz force and the turbulence induced by magne-
tohydrodynamical instabilities (Tayler-Spruit instability,
multidiffusive magnetic instability) have a strong impact
on transport of angular momentum and of chemicals (cf.
[6], [9], [28], [29], [22], [16], [1], [2]).
Rotation have also strong interactions with waves. In-
ternal waves which are excited at the borders with con-
vective zones, propagate inside radiation zones where
they extract or deposit angular momentum where they are
damped leading to a modification of the angular velocity
profile and of the chemicals distribution (cf. [32], [33],
[34], [35], [27], [11]).
Finally, in closed binary systems, where the companion
could be star as well as planet, there are transferts of an-
gular momentum between the star, its companion and the
orbit due to the dissipation acting on flows induced by the
tidal potential, namely the equilibrium tide (cf. [37]) due
to the hydrostatic adjustement of the star and the dynam-
ical tide which is due to the excitation of internal waves
(cf. [38]). This dynamical evolution modifies the inter-
nal rotation of each component that have consequences
on the properties of their internal transport.
Note also that rotation modifies stellar winds and mass
losses (cf. [14]).
To conclude all the processes with wich rotation interacts
transport angular momentum and matter that modifies the



internal angular velocity, the chemical composition and
the nucleosynthesis. Therefore, rotation (differential ro-
tation) has imperatively to be taken into account to get a
coherent picture of the internal dynamics and the evolu-
tion of the stars.

2. THEORETICAL CONTRIBUTIONS

First, the rotational transport of type I where angular mo-
mentum and chemicals are transported by the meridional
circulation and by the hydrodynamical turbulence due to
shear instabilities has been studied. We generalize its
present modelling to treat simultaneously the bulk of ra-
diation zones and their interfaces with convective zones,
the tachoclines (cf. [17]). Then, we have derived a new
prescription for the horizontal turbulent transport which
is derived from Couette-Taylor laboratory experiments
that allow to study turbulence induced by differential ro-
tation (cf. [18]). However, the introduction of these two
hydrodynamical mechanisms in stellar models leads to
results which do not agree with observations of solar-type
stars, because these have been slowed down by the wind
during their evolution and hence the rotational processes
are less efficient. Therefore, we consider the rotational
transport of type II where chemicals are still transported
by meridional circulation and turbulence, but where an-
gular momentum is carried by another process, the two
candidates being magnetic field and internal waves. First,
we introduce the effect of a fossil magnetic field in a con-
sistent way where we take into account the action of tur-
bulence, differential rotation and meridional circulation
on the field but also its feed-back on momentum and heat
transports (cf. [19]). Then, we introduce in the modelling
of internal waves the effect of the Coriolis force (cf. [20]),
that allows to include the gravito-inertial waves in the de-
scription of the angular momentum transport. Finally, a
coherent treatment of tidal processes has been derived (cf.
[21]).

3. MODELLING

3.1. Transport equations

To get a coherent dynamical description of stellar radia-
tion zones, the complete equations of magnetohydrody-
namics have to be solved.
The first one is the equation of induction:

∂t
~B = ~∇∧

(
~V ∧ ~B

)
︸ ︷︷ ︸

I

−~∇∧
(
||η|| ⊗ ~∇∧ ~B

)
︸ ︷︷ ︸

II

. (1)

It allows to study the temporal evolution of the magnetic
field, ~B, under its advection by the macroscopic velocity
field, ~V , (term I) and its ohmic diffusion (termII), ||η||
being the magnetic eddy-diffusivitiy tensor which could
be anisotropic due to the stratification of stellar radiation

zones.t is the classical time.
The second one is the well-known Navier-Stockes equa-
tion, in other words the equation of dynamics:

ρ
[
∂t

~V +
(

~V · ~∇
)

~V
]

= −~∇P − ρ~∇φ

+~∇ · ||τ ||+
[

1
µ0

(
~∇∧ ~B

)]
∧ ~B. (2)

ρ, P , φ are respectively the density, the pressure and the
gravitational potential;||τ || is the Reynolds stress tensor.
This equation allows to follow the dynamics of the stellar

plasma under the action of the advection
(

~V · ~∇
)

~V , the

pressure gradient, the gravitational potential, the viscous
friction and the Lorentz force. It as to be solved with the
continuity equation:

∂tρ + ~∇ ·
(
ρ~V

)
= 0. (3)

The last fundamental equation that has to be solved is the
equation for the transport of the macroscopic entopy,S:

ρT
[
∂tS + ~V · ~∇S

]
= ~∇ ·

(
χ~∇T

)
︸ ︷︷ ︸

I

+ ρε︸︷︷︸
II

−~∇ · ~F +J .

(4)
This equation describes the transport of entropy by ad-
vection with taking into account the thermal diffusion
(termI; T andχ are respectively the temperature and the
thermal conductivity), the heating due to nuclear reac-
tions (termII; ε is the nuclear energy production rate per
unit mass), the one due to turbulence:

~∇ · ~F = −~∇ ·
[
ρT ||D|| ⊗ ~∇S

]
, (5)

where||D|| is the eddy-diffusivity tensor, and the ohmic
heating:

J =
1
µ0

[
||η|| ⊗

(
~∇∧ ~B

)]
·
(

~∇∧ ~B
)

. (6)

µ0 is the vacuum magnetic permeability.
Finally, the equation for the transport of chemicals:

ρ
[
∂tci +

(
~V · ~∇

)
ci

]
= ~∇ ·

(
ρ||D|| ⊗ ~∇ci

)
(7)

has to be solved to study the mixing;ci is the concentra-
tion of the ith chemical which is considered.

3.2. Main assumptions

A multi-scales problem in time and space

Here, secular magnetohydrodynamics and its conse-
quences on stellar evolution is studied. Thus, secular
time-scales associated to the nuclear evolution of stars
are chosen. Moreover, low angular resolution (expansion
in few spherical harmonics) is considered due to the tur-
bulent transport in radiation zones (cf. next paragraph).



Physical processes which have dynamical time-scales and
need a high angular resolution description, such as hy-
dro or magnetohydrodynamical instabilities and turbu-
lence, are treated using prescriptions. This is the first step
to achieve the highly multi-scales problem of dynamical
stellar evolution that could not be yet studied with Direct
Numerical Simulation.

Scalar fields (rotation, temperature, chemical concen-
trations)

Stellar radiation zones are stably stratified regions. Thus,
the buoyancy force, which is the restoring force, acts to
inhibit turbulent motions in the vertical direction. This
leads to a strongly anisotropic turbulent transport where
that in the horizontal direction (on an isobar) is more ef-
ficient than that in the vertical one. Therefore, horizon-
tal eddy-transport coefficients are larger than those in the
vertical direction and the horizontal gradients of scalar
fields such as rotation, temperature and chemical con-
centration are smaller than their vertical gradients. An
horizontal expansion in few spherical harmonics is thus
allowed, and we get:

X (r, θ, ϕ) = X (r, t) + δX (r, θ, ϕ, t)

with δX (r, θ, ϕ, t) =
∑
l>0

l∑
m=−l

X̃ l
m (r, t) Y m

l (θ, ϕ)

and X (r, t) >> X̃ l
m (r, t) (8)

whereX andδX are respectively the horizontal average
on an isobar and the fluctuation.r, θ, ϕ are the classical
spherical coordinates.

Vectorial fields
Dynamical equations such as the induction equation or
the Navier-Stockes equation are three-dimensional vec-
torial equations. Here, aim is to study secular magne-
tohydrodynamics of rotating stars using stellar evolution
codes to study the consequences of transport on stellar
structure and evolution, these codes being mostly unidi-
mensional. To couple them with transport equations and
achieve our goal, we thus proceed as in stellar oscillations
theory, expanding vector fields such as macroscopic ve-
locities or magnetic field in vectorial spherical harmonics
(see [25]):

~u (r, θ, ϕ, t) =
∞∑

l=0

l∑
m=−l

{
ul

m (r, t) ~Rm
l (θ, ϕ)

+vl
m (r, t) ~Sm

l (θ, ϕ) + wl
m (r, t) ~Tm

l (θ, ϕ)
}

. (9)

The ~Rm
l (θ, ϕ), ~Sm

l (θ, ϕ) and~Tm
l (θ, ϕ) are defined as:

~Rm
l (θ, ϕ) = Y m

l (θ, ϕ) êr, ~Sm
l (θ, ϕ) = ~∇SY m

l (θ, ϕ)

and ~Tm
l (θ, ϕ) = ~∇S ∧ ~Rm

l (θ, ϕ) (10)

where~∇S = êθ∂θ + êϕ
1

sin θ ∂ϕ.

Those expansions in spherical functions of respectively
scalar and vectorial fields allow to separate variables in
transport equations. Thus, modal equations inr and t
only which could be implemented directly in stellar evo-
lution codes are obtained.

3.3. Preliminary definitions

The macroscopic velocity field is expanded as:

~V = r sin θΩ (r, θ) êϕ + ṙêr + ~UM (r, θ)
+~u (r, θ, ϕ, t) . (11)

The first term, whereΩ (r, θ) is the internal angular ve-
locity andêϕ is the azimuthal unit vector, is the azimuthal
velocity field associated to the differential rotation. Next,
the second termII corresponds to the radial lagrangian
velocity due to the contractions and dilatations of the star
during its evolution,̂er being the radial unit vector. The
third term~UM (r, θ) is the meridional circulation velocity
field which has been presented before and which is due
to the differential rotation and the transport of angular
momentum. Following the general method concerning
the expansion of vector fields, it is expanded in vectorial
spherical harmonics:

~UM =
∑
l>0

{
Ul (r) Pl (cos θ) êr + Vl (r)

dPl (cos θ)
dθ

êθ

}
.

(12)
The anelastic approximation is adopted, thus filtering out
sonic waves, that is justified for the slow meridional cir-

culation. Therefore, one have:~∇·
(
ρ~UM

)
= 0, that leads

to the following relation between the othoradial functions
Vl and the radial oneUl:

Vl (r) =
1

l (l + 1) ρr

d
(
ρr2Ul

)
dr

. (13)

Finally, ~u (r, θ, ϕ) is the velocity field of the internal
gravity (or gravito-inertial) waves.

Next, the temperature,T , and the mean molecular weight,
µ, are respectively expanded as:

T (r, θ) = T (r) + δT (r, θ)

with δT (r, θ) =
∑
l≥2

[
Ψl (r) T

]
Pl (cos θ) , (14)

and

µ (r, θ) = µ (r) + δµ (r, θ)

with δµ (r, θ) =
∑
l≥2

[Λl (r) µ]Pl (cos θ) ; (15)

T andµ are their horizontal averages,δT andδµ being
their fluctuations. Finally,Ψl and Λl are their relative
fluctuations.



Finally, the magnetic field is expanded using its
divergence-free property (cf. [3]):

~B (r, θ) = ~∇∧ ~∇∧ (ξP (r, θ) êr) + ~∇∧ (ξT (r, θ) êr) .
(16)

ξP andξT are respectively the poloidal and the toroidal
magnetic stream functions which are expanded in spheri-
cal harmonics as:

ξP (r, θ) =
∞∑

l=1

ξl
0 (r) Y 0

l (θ) (17)

and

ξT (r, θ) =
∞∑

l=1

χl
0 (r) Y 0

l (θ) . (18)

Here, the mean axisymetric magnetic field is considered
(m = 0). Therefore, the poloidal field,~BP (r, θ), is in
the meridional plane while the toroidal one,~BT (r, θ), is
purely azimuthal.

The different fields being now well defined, we have to
consider the modal transport equations that has to be im-
plemented in stellar evolution codes.

3.4. Transport equations system

First, we get the two advection-diffusion equations, for
respectivelyξP and ξT , that are issued from the spec-
tral expansion of the induction equation in the vectorial
spherical harmonics:

d
dt

ξl
0−rPAd;l

(
Ul, ~B

)
︸ ︷︷ ︸

Ia

= ηhr∆l

(
ξl
0

r

)
︸ ︷︷ ︸

IIa

(19)

and

d
dt

χl
0 + ∂r (ṙ) χl

0−TAd;l

(
Ω, Ul, ~B

)
︸ ︷︷ ︸

Ib

=
[
∂r

(
ηh∂rχ

l
0

)
− ηvl (l + 1)

χl
0

r2

]
︸ ︷︷ ︸

IIb

. (20)

The terms Ia and Ib, wherePAd;l

(
Ul, ~B

)
and

TAd;l

(
Ω, Ul, ~B

)
are function of the differential rotation,

the meridional circulation and the magnetic field, corre-
spond to the advection of~B by ~UM and to the production
of its toroidal component through the shear of differential
rotation. Terms IIa and IIb correspond to the turbulent
ohmic diffusion, where the possibility of an anisotropic
turbulent transport is assumed, withηv andηh being re-
spectively the eddy-magnetic diffusivity in the vertical di-
rection and in the horizontal one. The transport of each
physical quantity is studied from a lagrangian point of

view due to the contractions and to the dilatations of the
star during its evolution. The time-lagrangian derivative
d/dt is defined by:

d
dt

= ∂t + ṙ∂r. (21)

Then, the azimuthal component of Navier Stockes equa-
tion leads to the following advection-diffusion equa-
tion for the mean rotation rate on a isobarΩ (r) =∫ π

0
Ω (r, θ) sin2 θdθ/

∫ π

0
sin3 θdθ:

ρ
d
dt

(
r2Ω

)
− 1

5r2
∂r

(
ρr4ΩU2

)
︸ ︷︷ ︸

I

=

+
1
r2

∂r

(
ρνvr4∂rΩ

)
︸ ︷︷ ︸

II

+Γ ~FL

(
~B
)

︸ ︷︷ ︸
III

− 1
r2

∂r [FJ (r)]︸ ︷︷ ︸
IV

.

(22)

Term I corresponds to the advection of angular momen-
tum by the meridional circulation; termII is the diffusive
term associated to the action of the shear-induced turbu-
lence whereνv is the eddy-viscosity in the vertical direc-
tion. These two first terms correspond to the rotational
transport of type I. Next, termIII is associated to the
lorentz force torqueΓ ~FL . Finally, termIV corresponds
to the transport by internal waves,FJ (r) being the asso-
ciated mean angular momentum flux on an isobar. These
two last terms correspond to the rotational transport of
type II. The same type of equation is obtained for the dif-
ferential rotation in latitude (cf. [17], [19]).

Next, due to the long time-scales associated to the merid-
ional circulation, dynamical terms in the meridional com-
ponents of the Navier-Stockes equation are filtered, keep-
ing only its hydrostatic terms. Taking the curl of the hy-
drostatic equation, we get the thermal-wind equation:

ϕΛl − δΨl =
r

g
Dl

(
Ω, ~B

)
, (23)

whereg is the horizontal average of gravity, the explicit
form of Dl in function of Ω and ~B being given in [19].
The more general equation of state is used (cf. [12]):

dρ

ρ
= α

dP

P
− δ

dT

T
+ ϕ

dµ

µ
(24)

with α = (∂ ln ρ/∂ lnP )T,µ, δ = − (∂ ln ρ/∂ lnT )P,µ

andϕ = (∂ ln ρ/∂ lnµ)P,T , µ being the mean molecular
weight.

Finally, the equation for the transport of entropy is ex-
panded in spherical functions, and the following equa-
tion for the transport of the temperature fluctuation is ob-
tained:

CpT
dΨl

dt
+ Φ

d lnµ

dt
Λl︸ ︷︷ ︸

I

+
Ul(r)
Hp

(∇ad −∇)︸ ︷︷ ︸
II

=
L (r)
M (r)

Tl(r) +
Jl

ρ︸︷︷︸
III

, (25)



Tl(r) being given by:

Tl = 2

1−
fP

(
Ω, ~B

)
4πGρ

− (ε + εgrav)
εm

 g̃l

(
Ω, ~B

)
g

+
f̃P,l

(
Ω, ~B

)
4πGρ

−
fP

(
Ω, ~B

)
4πGρ

(−δΨl + ϕΛl)

+
ρm

ρ

{
r

3
∂rXl (r)−

l (l + 1)HT

3r

(
1 +

Dh

K

)
Ψl

}
+

(ε + εgrav)
εm

{Xl (r) + (fεεT − fεδ + δ)Ψl

+ (fεεµ + fεϕ− ϕ)Λl},

where

Xl (r) = HT ∂rΨl − (1− δ + χT )Ψl − (ϕ + χµ)Λl. (26)

∇ = ∂ lnT/∂ lnP is the logarithmic radiative gradi-
ent of temperature while∇ad is the adiabatic one.L
is the luminosity,M the mass,T the horizontal aver-
age of the temperature andCp the specific heat at con-
stant pressure. We have also introduced respectively
the pressure and the temperature scale-heightsHP =
|dr/d lnP | and HT =

∣∣dr/d lnT
∣∣, the thermal diffu-

sivity K = χ/ρCp, the horizontal eddy-diffusivityDh

andfε = ε/(ε + εgrav), with ε and εgrav being respec-
tively the mean nuclear and gravitational energy release
rates. εµ andχµ are the logaritmic derivatives ofε and
of the radiative conductivityχ with respect toµ: εµ =
(∂ ln ε/∂ lnµ)P,T andχµ = (∂ lnχ/∂ lnµ)P,T , their
derivatives with respect toT being noted asεT andχT :
εT = (∂ ln ε/∂ lnT )P,µ andχT = (∂ lnχ/∂ lnT )P,µ.
Moreover, we haveεm = L/M and ρm is the mean
density inside the considered level surface whereg(r)

4πG =
ρm

r
3 . TermsfP , f̃P,l and g̃l, the fluctuation of gravity

on an isobar, are associated to the meridional perturbing
force, ~FP , namely the sum of the centrifugal force and of
the meridional Lorentz force,~FL,P :

~FP =
1
2
Ω2~∇

(
r2 sin2 θ

)
+ ~FL,P . (27)

If we project ~FP on the vectorial spherical harmonics, its
explicit expansion in function ofΩ, ξl andχl is derived
(cf. [19]).
Note that in a medium of varying composition, we have to
take into account the entropy of mixing (cf. [13]). In the
simplest case, applicable to main-sequence stars, where
the stellar plasma can be approximated by a mixture of
hydrogen and helium with a fixed abundance of metals, it
can be expressed in terms of the mean molecular weight
only:

dS = Cp

[
dT

T
−∇ad

dP

P
+ Φ (P, T, µ)

dµ

µ

]
, (28)

whereΦ is a function of the metal mass fraction and of
µ, the mean molecular weight.

Finally, ohmic heating has been expanded in spherical
functions,Jl being the modal radial functions. Their ex-
plicit expression in function ofξl andχl is given in [19].

Term I, II and III in eq. 25 correspond respectively to the
multi-species caracteristic of the stellar plasma, to the
advection of temperature fluctuations by the meridional
circulation and to the ohmic heating. Next, the first
two lines in Tl constitute what is called the barotropic
term of the meridional circulation which is generated
by the perturbation of thermal imbalance by~FP . The
third line correspond to the thermal diffusion. In fact,
if we keep only the higher-order derivatives, we obtain
ρm

ρ
r
3∂r (HT ∂rΨl) which is directly associated with

the temperature laplacian. Finally, the last two lines
correspond to the energy production by nuclear reactions
and to the heating due to the radial adjustements of the
star during its evolution.

The last transport equation which is solved is that for the
the mixing of chemicals. Expanding it on an isobar, it
is obtained for the average of the concentration of each
chemical,ci:

ρ
d
dt

ci +
1
r2

∂r

[
r2ρciU

diff
i

]
=

1
r2

∂r

[
r2ρ (Dv + Deff) ∂rci

]
, (29)

whereUdiff
i is the velocity associated to the microscopic

diffusion processes while the strong horizontal turbulence
leads to the erosion of the advective transport of chemi-
cals which becomes a diffusive process (cf. [5]) with the
following diffusion coefficient:

Deff =
∑
l>0

(rUl)
2

l (l + 1) (2l + 1)Dh
. (30)

Then, taking the definition of the mean molecular weight:
1
µ =

∑
i [(1 + Zi) /Ai] ci (Ai andZi are respectively the

number of nucleons and of protons of the ith element
which is considered), the following advection-diffusion
equation is obtained forΛl:

dΛl

dt
− d lnµ

dt
Λl −

Ul

Hp
∇µ = − l (l + 1)

r2
DhΛl (31)

where∇µ = ∂ ln µ
∂ ln P .

4. NUMERICAL SIMULATION OF SECULAR
TRANSPORT: THE HYDRODYNAMICAL
CASE WITH A ’SHELLULAR’ ROTATION

4.1. Hydrodynamical transport equations system

The numerical simulations presented here were computed
with the dynamical stellar evolution code STAREVOL



and the reader is referred to [30], [23], [24] for a de-
tailed description. In the hydrodynamical case (~B = ~0)
where we assume that the differential rotation is shellular
Ω (r, θ) = Ω (r) due to the stronger horizontal turbulence
which enforce the angular velocity to be constant on an
isobar, the system is reduced to:

ρ
d
dt

(
r2Ω

)
− 1

5r2
∂r

(
ρr4ΩU2

)
=

1
r2

∂r

(
ρνvr4∂rΩ

)
(32)

and to thel = 2 mode of Eqs. 23,25 and 31 (here
internal waves are not taken into account). It has been
now implemented in STAREVOL.

This fourth-order system (cf. [39] for a more detailed dis-
cussion) is solved with the following boundary conditions
for Ω:

d
dt

[∫ rb

0

r4ρΩdr

]
=

1
5
r4ρΩU2 + ρνvr4∂rΩ, (33)

d
dt

[∫ R

rt

r4ρΩdr

]
= −1

5
r4ρΩU2 − ρνvr4∂rΩ−FΩ

(34)
and

∂rΩ = 0 at r = rb andr = rt (35)

whererb andrt are respectively the radius of the bottom
and of the top of the considered radiation zone;FΩ is the
flux of angular momentum which is extracted at the sur-
face by the wind. The condition given in Eq. 35 has been
chosen using our knowledge of angular velocity inside
the solar convection zone, whereΩ (r, θ) depends mainly
on the latitude. However, we are perfectly conscious that
in the general case∂rΩ has to be matched with its value
in the adjacent convection zones that has to be determined
by observations or by numerical simulations. Those val-
ues could have a strong impact on the mixing which then
occurs (cf. [24]).
The two boundary conditions for Eq. 29 are respectively
at r = rb andr = rt:

d
dt

[
ci

∫ rb

0

r2ρdr

]
= −r2ρ

(
Udiff

i ci

)
+r2ρ (Dv + Deff) ∂rci (36)

d
dt

[
ci

∫ R

rt

r2ρdr

]
= r2ρ

(
Udiff

i ci

)
−r2ρ (Dv + Deff) ∂rci − Ṁci (37)

whereṀ is the horizontal average of the mass-loss rate
at the surface (one has to recall thatṀ is a function of the
latitude if the effect of rotation on stellar winds is taken
into account (cf. [14])).

4.2. Application to a 1.5M� star with a solar metal-
licity

The results presented here are issued from the numerical
simulation of the evolution of a1.5M� star with a solar
metallicity (Z = 0.02) and an initial equatorial rotation
velocity vini = 100 km.s−1. The age is7.604 × 108

yr with a central Hydrogen mass fractionXc = 0.57.
It is now possible to follow for each time-step the in-
ternal hydrodynamics of the radiation zone(s) of the star
which is studied, following simultaneously the differen-
tial rotation profile (see Fig. 1), the temperature and the
mean molecular weight excesses due to differential rota-
tion (see Fig. 2 & 3) and the associated meridional circu-
lation pattern (see Fig. 4).

Figure 1. The differential rotation profile.

Figure 2. The T-excessesTΨ2P2 (cos θ). It reachs
+2.81× 105K in the inner region closer to the polar axis
and−5.63× 105K in the inner equatorial region and be-
come smaller near the surface.



Figure 3. Theµ-excessesµΛ2P2 (cos θ). They only occur
close to the core and they are positive near the equatorial
plane.

Figure 4. Meridional circulation currents. In this model,
the outer cell is turning counterclockwise allowing the
equatorial extraction of angular momentum by the wind.

Moreover, diagnosis tools have been developped to iden-
tify dominant physical processes in the angular momen-
tum transport, the meridional circulation and the chemi-
cals mixing.
Considering Fig. 5, one can easily identify that here an-
gular momentum transport is dominated by the advection
by the meridional circulation, its flux transported by the
shear-induced turbulence being smaller at least of an or-
der of magnitude except in the region near the center.
Then, looking at Fig.6, one can easily identify that merid-
ional circulation is mainly driven by the barotropic terms
and by the thermal diffusion. The term due to the nu-
clear energy production has to be taken into account only
in the region of the star where nuclear reactions occur,
here in the center, while the non-stationary term is com-
pletely negligible since the star which is studied here is

a main-sequence star where structural adjustements are
weak. Finally, if transport coefficients are studied, it can
be indentified that the meridional circulation is the dom-
inating process in the transport of chemicals while our
fundamental hypothesis concerning the turbulent trans-
port is verified (Dv <<Dh).
Work is now in progress to implement differential ro-
tation in latitude and transport by magnetic field and
gravito-inertial waves, those two last processes being cru-
cial to explain the internal rotation profile of the Sun and
the properties of low-mass stars. This will lead to an hy-
drodynamical (and then to a MHD) vision of stellar evo-
lution ready for helio and asteroseismic diagnosis.

r     (R)

6

Figure 5. Logarithm of the total flux of angular momen-
tum (black line) and of that transported by meridional
circulation, FMC (r) = 1

R4
�

1
5ρr4ΩU2, (red line) and by

shear-induced turbulence,FS (r) = 1
R4
�

ρνvr4∂rΩ, (blue

line).

r     (R)

2

Figure 6. Logarithm of the meridional circulation (black
line), the barotropic term (blue line), the thermal diffu-
sion term (red line), the nuclear energy production and
heating due to gravitational adjustements term (green
line) and the non-stationarity term (purple line) profiles.



r     (R)

Figure 7. Logarithm of the themal diffusivity (cyan line),
the horizontal eddy-diffusivity (black line), the effective
diffusivity associated to meridional circulation (red line),
the vertical eddy-diffusivity (blue line) and the total ver-
tical diffusivity,Dt = Dv + Deff , (purple line) profiles.

5. CONCLUSION

In this work, a coherent description of dynamical trans-
port processes which take place in stellar radiation zones
has been undertaken. Each of them and of their respec-
tive effects on angular momentum and chemicals trans-
port has been indentify and modelled in a consistent way.
For the first time, a two-dimensional picture of internal
dynamics of stellar radiation zones is obtained and the
first step of the numerical implementation of theoretical
results in stellar evolution codes, namely the purely hy-
drodynamical case where it is assumed that the strong
horizontal turbulent transport enforces a shellular rotation
law, has been achieved. Moreover, work is in progress
to implement differential rotation in latitude, magnetism,
gravito-inertial waves and tides while theoretical work
is engaged to give prescriptions for MHD instabilities,
waves excitation and tides dissipation. Thus, with the
actual and forthcoming helioseismology and asteroseis-
mology spatial missions such as SOHO, GOLF-NG (Dy-
naMICS project, cf. [36]), MOST and COROT, with the
powerful ground-based instruments such as ESPaDOnS,
HARPS and the VLT, with the development numerical
simulations and of physics instruments which allow to
make laboratory experiments relevant for astrophysical
plasmas, we hope to be able in the near future to obtain
a dynamical vision of the Hertzsprung-Russel diagram in
support of helio and asteroseismology.
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